
Geoinformatica
https://doi.org/10.1007/s10707-021-00448-9

How do you visit: Identifying addicts from large-scale
transit records via scenario deep embedding

Canghong Jin1 ·Dongkai Chen2 ·Zhiwei Lin3 ·Zemin Liu4 ·Minghui Wu1

Received: 6 November 2019 / Revised: 16 June 2021 / Accepted: 22 July 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Identification of individuals based on transit modes is of great importance in user tracking
systems. However, identifying users in real-life studies is not trivial owing to the following
challenges: 1) activity data containing both temporal and spatial context are high-order and
sparse; 2) traditional two-step classifiers depend on trajectory patterns as input features, which
limits accuracy especially in the case of scattered and diverse data; 3) in some cases, there
are few positive instances and they are difficult to detect. Therefore, approaches involving
statistics-based or trajectory-based features do not work effectively. Deep learning methods
also suffer from the problem of how to represent trajectory vectors for user classification.
Here, we propose a novel end-to-end scenario-based deep learning method to address these
challenges, based on the observation that individuals may visit the same place for differ-
ent reasons. We first define a scenario using critical places and related trajectories. Next,
we embed scenarios via path-based or graph-based approaches using extended embedding
techniques. Finally, a two-level convolution neural network is constructed for the classifi-
cation. Our model is applied to the problem of detection of addicts using transit records
directly without feature engineering, based on real-life data collected from mobile devices.
Based on constructed scenario with dense trajectories, our model outperforms classical clas-
sification approaches, anomaly detection methods, state-of-the-art sequential deep learning
models, and graph neural networks. Moreover, we provide statistical analyses and intuitive
explanations to interpret the characteristics of resident and addict mobility. Our method
could be generalized to other trajectory-related tasks involving scattered and diverse data.
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1 Introduction

Drug addiction not only harms individual health but is also linked to criminal and offensive
behavior, leading to public safety concerns and social problems. The National Narcotics
Control Commission reported that there were more than 2.5 million drug users in China by
the end of 2016, with 6.8 percent growth. Worldwide, the total is about 275 million people,
representing roughly 5.6 percent of the global population aged 15–64 years, according to
the 2018 World Drug Report [1]. Police departments, which have important roles in con-
trolling drug problems, use “strong relationships” detection methods, such as call record
analysis, trade record exploration, and human face recognition. In real life, since such strong
relationships are rare and difficult to obtain, it is necessary to use relevant “weak” rela-
tionships such as transit patterns to solve the detection problem. With the development of
mobile and sensor techniques, individual transit pattern analysis is widely used in the field
of public security. For instance, the police use Google to find crime suspects by seeking data
from mobile phones in target areas, and pickpocket suspects are identified by mining pub-
lic transit records in Beijing [7]. Here, based on previous studies, we apply spatio-temporal
movement records to the addict detection problem, given the following two phenomena.
First, it has been reported [47] that most addicts are young and frequently use mobile appli-
cations; thus, their transit behaviors could be tracked by mobile devices. Second, according
to various drug-related judgments and articles [37], addicts usually have low levels of edu-
cation and are unemployed, self-employed, or social idlers. Therefore, their activities might
be different from those of other residents, which may provide some discriminative features
for classification (Fig. 1). Our experiments in real-life data also provide evidence of this
phenomenon.

Typical modeling for user identification considers that most people follow a simple and
reproducible pattern with respect to movement [25]; nearly 93 percent of personal tran-
sit is predictable, according to a study measuring the entropy of individuals’ trajectories
[32]. Based on this assumption, the current identification task could be addressed using sev-
eral main approaches. The first approach is based on statistical features, using detection of
transport modes (walk, bike, bus, etc.) in the daily activities of different groups of people
[30, 44–46]. This enables classification of users with a transport model via machine learn-
ing methods. Other approaches focus on mining various patterns in speed, direction, and
duration [28], as well as periodic patterns, from a spatial-temporal sequence [4, 5]. After
extracting features of movement patterns, classifiers can be leveraged to distinguish users.
TraClass proposes region-based and trajectory-based clustering methods to improve the
accuracy of classification [22]. Deep learning (DL) methods are often applied to trajectory-
related problems. For instance, STResNet [42] was designed to forecast the flow of a
crowd, and the DeepMove [8] model predicts an individual’s next location using a recurrent
attention network.

Despite the great benefits of these methods in classifying or predicting human behav-
iors, they pose some challenges when applied to our problem. 1) The data are imbalanced
and the number of target users is tiny. More importantly, we do not know whether a person
is a suspect until they have been arrested, which means we cannot make use of any previ-
ous survey describing the movement behaviors of particular groups. Thus, statistics-based
models [30, 44, 46] will not work well. 2) As movement records collected by WiFi sen-
sors can only give an approximate range, their accuracy in terms of longitude and latitude is
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Fig. 1 Motivation and process of scenario embedding model. There are three trajectories going through
the key point O0,(e.g., Station) in which trajectory P1 = (O1,O2,O0,O6) and trajectory P2 =
(O1,O3,O0,O4,O5,O0,O3) belong to userA and trajectory P3 = (O9,O8,O7,O0) belongs to userB.
Although userA and userB go through the point O0, their transit intention might be different. userA treats
“station” as a passing point while userB treats it as destination. Moreover, the structure of P1 and P2 are
more complicate than P3

lower than that of GPS data. Moreover, individuals’ movements might be unobserved when
they enter places without sensors, where trajectories might be lost. 3) Pre-processing oper-
ations such as TraClass [22] use region-based and trajectory-based approaches to increase
classification accuracy after clustering trajectories in a homogeneous dataset; an example
is shown in Fig. 2(a), where the different animals have separate activity regions.1 How-
ever, in our case, most regions are heterogeneous and visited by both addicts and residents
(Fig. 2(b)). 4) Suspect identification via public transit records [7] cannot be used to solve
our problem, because urban travel in our dataset does not follow a fixed route such as bus
or subway. Other DL methods for mobility prediction, such as STResNet [42] and Deep-
Move [8], attempt to generate features of trajectories, but their goal is to predict the next
step, which is not our aim.

We choose a station as a scenario, as in the example in Fig. 3, to demonstrate data diver-
sity. Here, we define the trajectory length as the number of points of the trajectory. In part
(a) of the figure, the horizontal axis represents the trajectory length of users going through
the plaza, and the vertical axis indicates the Jaccard similarity between trajectories with var-
ious length. Part (b) shows the diverse lengths of trajectories. According to these results,
even if several people pass the same point, their trajectories vary and their next location is
unpredictable.

In order to address the challenges of trajectory sparsity and diversity, in this work we con-
struct a transit scenario that represents user movements rather than trajectories, where the
trajectories are dense and points have special meanings. Figure 1 illustrates our motivation
and the process of generating the scenario embedding model (SEM).

Regarding addicts’ activities, we define two types of scenario: the user’s favorite-spot
scenario (by visit frequency) and a special-spot scenario (by place type). The former con-
tains more trajectories, whereas the latter involves clearer intentions. One could choose

1https://www.fs.fed.us/pnw/starkey/data/tables/

https://www.fs.fed.us/pnw/starkey/data/tables/
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(a) the animal data (b) the transit data

Fig. 2 Comparison of homogeneity between two trajectory cases. (a) Animal movement dataset generated
by the Starkey project [22], where red is elk, blue is deer, and black is cattle. (b) The urban transit dataset in
our study, where red represents addicts and blue represents residents

other points to construct a scenario, depending on the data features and application func-
tions. Moreover, we propose two strategies to demonstrate user intention in scenarios with
different granularity: a path-based strategy from a sequential perspective and a graph-based
strategy from a structural perspective.

Overall, we define a scenario S by its key place K (denoted by a star in Fig. 1) and design
a two-level convolutional neural network (CNN) to capture the classification task. This can
be used to optimize the model in the training step and avoid human influence.

Our contributions to the literature can be summarized as follows.

– We propose an end-to-end framework containing well-selected scenarios and embed
this information to classify individuals based on their long-range and sparse trajectories.
Our framework is generalizable to other trajectory classification problems and does not
depend on human-selected features.

– We leverage novel embedding methods to represent the latent semantic intention of
a scenario using two models: a path-based model and a graph-based model. We also
use temporal information to provide joint features for learning. To the best of our

Fig. 3 Trajectory diversity in scenario plaza. (a) trajectory Jaccard similarity measured in various length.
(b) trajectory length distribution
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knowledge, our framework is the first to identify users by learning their transit
behaviors directly.

– We evaluate precision, recall, and F-value on a real-life mobility dataset. Compared
with the results of classical classification methods, anomaly detection (AD) methods,
state-of-the-art DL models including the sequential long short-term memory (LSTM)
model, and graph neural networks including graph convolutional networks (GCN) or
graph attention networks (GAT), the evaluation results demonstrate that our model
outperforms all baselines.

– Although our model cannot solve the problem completely, that is, we cannot iden-
tify addicts by trajectories only, our findings point to a significant improvement in the
classification of trajectories. We observe that describing transit behaviors by scenario
embedding could partly address the data scattering challenge and could to be applicable
to other trajectory problems.

2 Preliminaries

2.1 User mobility track

We constructed a real-life observational dataset using WiFi sensor equipment installed all
over the city, includes MAC address, timestamp and geo-information. By using these transit
data and location features, we could generate user track behaviors as Fig. 1 shows. Transit
data represents transit track of people in the city and consists of time and location informa-
tion. Basic location features provide additional semantic of location such as location name,
location category, longitude and latitude.2 Finally, we distinguished users based on a suspect
list provided by the police security department. People on the list were treated as positive
instances, and other residents were considered as negative instances. Clearly, the number of
negative instances was much larger that of positive ones.

2.2 Problem formulation

Here, we introduce several basic concepts and provide a formal definition of the scenario-
based user identification problem. Detailed descriptions of the notation used in our problem
can be found in Table 1.

Definition 1 A trajectory Pu = {O1,O2, ...,On} consists of a series of points belonging
to user u, each of which can be represented as Ou(g, t), where g is the position information
in terms of latitude and longitude and t is the related transit time. All points in a trajectory
are in chronological order, which means that ∀Ou

i ,Ou
j ∈ P , we have tui < tuj if i < j .

Definition 2 A scenario Su
K,〈P〉 represents the movement characteristics of a user in a

certain place and contains three components: user u, key point K, and trajectories through
the key point 〈P〉. In each scenario, the key point represents the transit semantics and the
trajectories describe the transit characteristic.

2https://github.com/jincanghong/traj cls/tree/master

https://github.com/jincanghong/traj_cls/tree/master
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Table 1 Notation used in our problem

Notation Descriptions

u A user u is a resident or a suspect

Ou(g, t) Movement data of user u consists of location g and timestamp t

Pu(Oi) A trajectory P belongs to user u and consists of a series of Oi

K Key points of a user’s scenario

Su
(K,〈P〉) A user’s scenario, with key points K and a set of trajectories

N (i,m, n) The previous m points and next n points of index i in a trajectory

TK Location types of key points k

G = (V ,E) Graph G with set of nodes V and set of edges E

Gc = (V c, Ec) Sub graph G with c layers

F A function to generate graph G with trajectories

d Dimensionality of the embedding

Yi ,YP ,YG Embedding of a node, trajectory (P), and graph (G)

Unlike trajectory P , which is represented as a single path, S contains multiple trajecto-
ries with certain semantics. For example, Fig. 1 shows two scenarios for users. Scenario 1
has two trajectories and has a more complex structure than Scenario 2.

Definition 3 A graph is given by G = (V ,E), where V is a set of points and E is a
set of edges between the points in V . We use F(K, 〈P〉) to generate G. For example, in
Fig. 1, userA goes through the station via two trajectories, generating a scenario graph G,
where K=station, P = {trajectory1, trajectory2}, and u=userA, details of the generation
process will be in Section 3.3.

Definition 4 A sub-graph of Gc = (V c, Ec) can be extracted from a scenario graph, where
if a node v ∈ V c and an edge ec ∈ Ec, then v ∈ V and e ∈ E.

In our work, as suggested in [29, 38], we define a “graphlet” as a set of 30 sub-graph
structures, as shown in Fig. 4. As a graph G consists of various graphlets, we use a complex
graphlet first strategy to select the best one. For instance, the graph in Fig. 4 could be split
into G1 and G6, but we prefer G17 because it contains more nodes. If two graphlets have
the same number of nodes, we randomly select one of them.

Definition 5 The addict identification problem is defined as judging whether or not a user
u is an addict based on their trajectories 〈P〉.

In this work, we used an addict list provided by the police department to identify positive
instances where at least 3 months of data had been collected before the person’s arrest. To
identify negative instances, we focused on residents for whom long-range and high-quality
trajectory data were available, and we compressed some trajectories using PRESS [33] and
TraClass [22].

Fig. 4 Connected, non-isomorphic induced graphlets of size ≤ 5
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3 Scenario construction process

In this section, we introduce how to construct our classification framework Su
K,〈P〉 including

1) scenario selection strategies; 2) scenario embedding methods.

3.1 Scenario selection strategy

We define a scenario using two components: key points and trajectories. For example, in the
case in Fig. 1, a scenario could help us to answer the following questions: where and when
does a user visit a place? and how did he/she get there? That is, besides movement patterns
such as velocity, duration, or distance of trajectory, the places visited in a trajectory could
also be analyzed to improve our understanding of travel behavior. This could be achieved,
for example, by using location-based social network applications [43].

The semantics of trajectories can be defined by one or more special points (key points
K). For example, the scenario “Jack rides to work” has TK =(home, office), and the scenario
“Jennie likes to watch movies in a theater” has TK = (theater). Therefore, in our case
study, it is better to design a scenario selection strategy by considering both significant
semantic knowledge about trajectories and quality of trajectories. In this paper, we propose
two key points selection strategies as a guide, there are also other strategies based on the
characteristics of each dataset.

Special spot strategy In this strategy, we prefer the semantic meaning of a point to its geo-
graphical information. Most points, including street, avenue, or crossroads, do not contain
particular or clear semantics, whereas others such as hospital, Karaoke TV,KTV, or station
are more meaningful for our target analysis. As the target instances in our study are addicts,
based on analysis of criminal records provided by the police, we chose certain points as
special spots around which to monitor movement behaviors for modeling.

Favorite spot strategy In this strategy, we make use of the movement patterns in users’
daily lives by observing the places they visit most frequently. A point is defined as a user’s
favorite spot if they visit it more frequently than other points. In this way, we can generate
preferred places for each user, such as their home, office, or points on the way to work.
Trajectories around these points are often more dense than those in other places, as shown
in Table 2, and could thus supply more information.

These two strategies focus on different aspects and have different advantages. Special
spots contain clear and rich semantics and are the same for all users. Therefore, these points
can provide valid information in tasks such as detecting the movement patterns of all visitors
to a railway station. However, as special points represent only a small proportion of all
points, for most users, trajectories involving these points are not sufficient for our analysis.
Favorite spots, by contrast, vary among different users, indicating the users’ preferences.
Sometimes, favorite spots are considered ‘normal’, i.e., without specific meanings; however,
we can use them in scenarios to describe a user’s daily life, i.e., scope of present activity
near home or work place.

Table 2 Statistics of real life
dataset Dataset Addict Resident Addict traj. Resident traj.

All Spots 270 38739 12391 2282630

Special Spots 154 21494 4764 3919972

Favorite Spots 179 19656 8701 4066495
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Trajectory selection We consider a scenario with trajectories under two conditions. First,
the path should contain at least one key point K ∈ P . Second, in order to construct a context
graph for a scenario, there should be multiple trajectories passing through the points.

3.2 Path-based scenario model

Based on the above definitions, we first propose a path-based scenario model (SEMP ) to
present semantics in a scenario with multiple paths, as shown in Fig. 5. Here, we define
a path as a segment of a trajectory. To model scenarios and also deal with the context of
various paths, we have developed a combined path-embedding mechanism.

Path embedding We use the scenario shown in Fig. 5 as an example to provide an overview
of the process of path embedding. This scenario contains two related trajectories. For each
trajectory, two components, location embedding and time embedding, need be embedded.

1) Location Embedding. First, we embed points in our dataset in their sequential
order in the related trajectories to obtain vector values [11]. Then, a given location-
embedding function takes each trajectory in turn as its input and produces a vector
space, with each unique point Oi in the space corpus assigned a corresponding vector
vi in an area with dimension d .

2) T ime Embedding. Given a series of timestamps in a trajectory Pu, represented as
(O1(t),O2(t), ...,On(t)), we define a position-related method for time embedding.
We use Ou(g, hth) to represent a user-visited location g at the hth hour in a day. Here,
hth is a index of t and describes an activity or behavior at hour h, that is, it represents
human movements on the corresponding time dimension. A one-hot encoding method
is used as follows to map O(t) to an integer value and then to represent the activity
time as a binary vector containing all zero values except the index of the integer:

t = [0...1...0],O(t) ∈ hth, h ∈ [0, 23]. (1)
For example, we use Ou(g, 9th) to indicate user transit location O during the time period

9:00 to 10:00 am.
As the time sections are ordered in sequence, we add “positional encoding” using the

sine and cosine functions with different indices [35]:

T imeEmb(pos,2i) = sin

(
pos

1000
2i

dmodel

)
(2)

T imeEmb(pos,2i+1) = cos

(
pos

1000
2i

dmodel

)
(3)

Fig. 5 Structure and process for SEMP . The selected path contains a key point O0 and a window of length
[m, n] for embedding the scenario
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Positional encoding has no a learning process, each word in the given sentence or each
position in a trajectory in a trajectory in this case will automatically get a unique embedding
representation based on their appearance order in a sequence. This method is used in natural
language processing for processing long sequences, e.g., Transformer in [35]. We set the
embedding size of positional encoding is 128.

To take the spatial-temporal information of a trajectory into account, we combine these
two embedding vectors. The embedding value of Oi ∈ P is Xi = [Yi, Zi], where Yi ∈
Rd is a vector of position in P and Zi ∈ R

d ′
is a vector of activity time in P ; thus i ∈

R
d+d ′

. Given a trajectory P = {O1,O2, ...,OM }, we define YP = [X1, 2, ..., M ] and YP ∈
R

M×(d+d ′).

Scenario embedding To differentiate path-embedding contributions, we introduce a key
point context-aware mechanism to code the environment of a scenario. Taking Fig. 5 as an
example, where node 0 is a key point with index i, we set the window [m,n] to extract m
previous points and n subsequent points, and we pad them if there are not enough points. In
our experiment, we set both m and n as 10. Therefore, for each trajectory P ∈ Su

K,<P>, if we

use N(i,m, n) to represent the context, the result of the embedding is YP ∈ R
|m+n|×(d+d ′).

Finally, a scenario with k trajectories can be embedded as [YP1 ,YP2 , ...,YPk
]. Algorithm

1 shows the whole process of building a scenario with multiple paths.

3.3 Graph-based scenario model

Although building scenario on path-view is easy to interpret and simple to implement, its
ability of expression is limited because of ignoring the relationship of between different
trajectories. In order to describe the activities around the key point, we propose a more
complex graph-based model to describe this scenario, in which structures of graphs could be
utilized as movement patterns. Our motivation of SEMG is to represent a daily phenomenon
of activities. In SEMG , multiple trajectories in a given scenario could be used for building
a graph G = (V ,E) , where a key point k ∈ K at the center of graph G, V is the vertex set
and E are edges between vertexes.
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Briefly, for each user, we conduct a activity scenario based on the user’s historical move-
ments. First, all points except the key points are selected to form a candidate point set CP

(e.g., O8, O11 in Fig. 6). Then, for every pair of points in CP , we add an edge between them
if they are consecutive points in any historical trajectory. Next, inspired by the influence
propagation in social network [39], we introduce the concept of graph layers in our model
as follows: given a pair of points

〈
Ok, Oj

〉
, where Ok is a key point and Oj ∈ c− step layer

if the length of the shortest path from Oj to Ok is c, we can generate a graph Gc = (V c, Ec)

in each layer, where V c represents the points in the c − step layer and Ec ∈ |V c × V c|.
When there are multiple subgraphs in a scenario, there is an inclusive relation between two
layers. Thus, for a given Gc, Gc′ ∈ Su

K,<P>, if c > c′, we can infer that Gc′ ⊂ Gc.
To describe the structure of graph Gc, we define several basic graphlets as described in

Fig. 4 and as proposed in a previous article [29], where a small graph can be divided into
several smaller graphlets which are the basic component of a graph, and each graphlet can
keep unique important information respectively because of their edge connectivity, so our
goal is now representing a series of graphlets instead of a graph. Graphlets treated as sub-
structures could be embedded by deep graph kernel method, which could build a corpus
where the co-occurrence relationship between graphlets is meaningful [39].

Before dividing a subgraph into graphlets, we first need to calculate its modularity
defined by equation 4. Modularity is designed to measure the strength of division of a graph
into graphlets (modules) in our case, in other words, a graph with high modularity have
dense connection between the nodes within modules but sparse connections between nodes
in different modules. We then use graph segmentation methods (a community division algo-
rithm [14] or the Depth First Search algorithm) to split Gc into a set of graphlets g. The
following step is to generate a unique vector for each graphlet by network embedding meth-
ods applied to the graph structures. Here, we use node2vec [13] to embed graphlets and the
embedding size of this is 128, more parameters details can be found in Section 5.4. The
overall generative process is summarized in Algorithm 2. The graph-based embedding vec-
tor merges structure and layer information in a scenario, thereby potentially improving the
identification performance of the model.

Q = 1

2m

∑
vw

[
Avw − kvkw

2m

]
δ(cv, cw) (4)

Fig. 6 Structure of Graph-based Model SEMG . On the left hand, there are three trajectories with differ-
ent color going through the key point O0. The points O3,O7,O8,O4,O10,O11 are in 1-step layer of O0
and generated by G0 and G1. On the middle, we put external points(i.e., O2,O9) into the 1-step layer and
regenerate graph G. And on the right hand, scenario is embedded with visited time and graph structures
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4 Learning process

Having constructing a well-conditioned representation of the scenario as a set of point
vectors and the corresponding relative graphlets, in this section, we propose a neural
network-based framework to detect addicts from large-scale movement records. Unlike
other two-step classification methods, which rely on two separate classifier processes (a
trajectory pattern classifier T C and a user classifier UC based on the results of T C), our
framework uses an end-to-end method to describe user behaviors in structures of multiple
granularities (path-based or graph-based) and to optimize models for the identification task.

As shown in Fig. 7, we first collect trajectory records of users and pre-process these
records, including data cleaning and trajectory compression, and define special spot and
favorite spot scenarios for different groups of users. We use approaches suggested in [18, 27,
34] to embed spatial and temporal features with different granularities. For the path-based
model, we obtain an embedding vector corresponding to each point in a path, whereas for
the graph-based model, each graphlet extracted from a trajectory is represented as a unique
vector. Owing to the differences in the lengths of trajectories, the embedded trajectories
from the proposed model form a variable input to the CNN. Thus, we represent the trajectory
embedding as a matrix, where each row represents a point or graphlet embedding and the
number of columns corresponds to the number of points or graphlets in the trajectory. We
reshape this matrix to have a fixed size, splitting it if it is too large or padding it with zeros
if it is too small. In our experiments, the input data are in the form of three-dimensional
matrices of size N × s × d , where N is the number of channels after reshaping each matrix,
s is the sequence length (50 in our experiment), and d is the sum of the dimensions of the
point/graphlet embedding and time embedding. After reshaping the input matrices, we feed



Geoinformatica

Fig. 7 The architecture of framework

them into a CNN including two different convolution groups and two max-pooling layers.
The first group, Conv1, is used to extract features in the embedding dimension, where
the filter size is c1 ∈ R

o×r×d , o is the number of output channels, r is a hyperparameter
that we have designed, and d is the embedding dimension mentioned above. A feature fi

is calculated from the convolution operation, and we apply the Max-Pooling operation
to extract the maximum value f̂ = max(f ). The second group, Conv2, extracts features
through the previous convolution output channel, and applying a Max-Pooling layer to
the channel dimension makes the data channel-free. Finally, a fully connected layer with
dropout and softmax output is obtained to identify users.

5 Experiment results

In this section, we present the experimental results obtained with our framework. First, we
describe our dataset and the experimental environments. Then, two case studies are used
to illustrate movement characteristics in different scenarios. Finally, we evaluate our mod-
els with respect to precision, recall, and F-score and compared them with several baseline
methods.

5.1 Dataset and platform

Dataset We collect user movement records from sensors all over the city and do prepro-
cessing to choose actual residents in three steps. First, In order to filter out data not generated
by mobile phones, we check if the MAC belongs to those android brands according to
the top-10 best-selling and most popular phones in China, such as Huawei, OPPO, Vivo,
Xiaomi, Meizu, Gionee, Samsung, Letv, and Lephone, which accounted for over 75% mar-
ket. And then, we select qualified residents, who have relatively more activity track records
in our sensor system and have at least two weeks data in a month. Finally, we conduct three
datasets for our experiments. 1). the whole dataset; 2). Special Spot dataset is part of all
dataset, which only contains users who visit crucial spots. This dataset could describe users’
scenarios for some clear semantics; 3). Favorite Spot dataset is generated from users’ the
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most frequency visiting spots. The overview of three datasets are in Table 2, in the two sub-
dataset, the number of trajectory of addicts is smaller than the whole dataset while that of
the resident is higher, this is because that a single path may contain several special spots or
favorite spots and we will separate it to multiple segments, which will finally produce more
trajectories.

Table 2 shows that all of three datasets are imbalanced, such as 1:143 examples in the
minority class to the majority class in all Spots dataset. According to article [3, 9], we split
positive instances and utilize imbalanced-learn Python library3 to undersample majority
class(resident) with setting sampling strategy value to 0.2 for training. In order to evaluate
the effectiveness of our model in imbalanced data, we set the ratio of positive and negative
instances as 1:100 for testing.

Experiment environment The platform is a Dell server 64-bit system (16 core CPU, each
with 2.6GHz, four GPUs GTX 1080ti, 32G main memory). The algorithms and models in
our paper were implemented by Python 3.6.

5.2 Case study: scenario with special spots in city

Taking the location categories supplied by the police department into account, we choose
four scenarios: hotel, park, station, and plaza, for two reasons. First, these places were
expected to provide sufficient data for analysis. Based on previous statistic, we set threshold
of the minimum number of trajectories for constructing a scenario is 16. Second, as these are
places that suspects often visit for trading or substance abuse, sensors are already installed
there. We can use unsupervised learning methods to detect significant scenarios if we have
more data.

In order to investigate the structure of a graph, we visualize the output of graphlet struc-
tures for special spot scenarios as in Fig. 8. We first choose the special spots and build the
scenarios as described in Section 3, and then we normalize the weights of the number of
graphlets based on all the addicts and some of the residents. Finally, we calculate the co-
occurrence matrix of the graphlets and illustrate them as a heatmap. The horizontal axis and
vertical axis in each square matrix represent both graphlet indices.

Figure 8 shows that simple structure graphlets (e.g., G0, G1, G2) have more weight
than complex structure graphlets (e.g., G28,G29, G30) and simple graphlets are easier to
combine with other simple or complex graphlets like G0 and G1. To see the dense of the
heatmap, we study the difference of scenario complexity of two kinds of users. Among
nearly 900 concurrence tuples, we note that residents have richer graph structures than
addicts have. Moreover, residents have more simple graphlets than addicts have and have
more concurrence graphlets tuples. Thus, we can infer that residents prefer to travel with
simpler patterns, but some addicts visiting those special places with more complicated pat-
terns. This phenomenon is consistent with our assumption that some places are attracted to
addicts.

5.3 Case study: scenario with user history behavior

In this scenario, we first collect users’ historical records and extract the most frequent loca-
tions as their favorite spots, with all addicts and a subset of residents as our target users. The

3https://github.com/scikit-learn-contrib/imbalanced-learn

https://github.com/scikit-learn-contrib/imbalanced-learn
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Fig. 8 The heatmap of graphlet concurrence

positions of the top 50 favorite spots are shown on the map in Fig. 9, where the red spots
correspond to addicts and blue spots correspond to residents. We select the top 50 locations
in this scenario because the distribution of frequent locations followed a power law, and the
trajectories are very sparse for most users when the number of positions is greater than 50.
As shown in Fig. 9, the favorite spots of residents are concentrated close to main streets and
central business districts (CBD), whereas addicts’ favorite spots are scattered all over the
city. Therefore, we would obtain entirely different scenarios for the two groups.

Next, we calculate the transit similarity for each group using the Jaccard formula. As
shown in Fig. 9, from an individual perspective, most addicts or residents have diverse
trajectories; on the horizontal axis, which represents individual behavior similarity, the ratio
of each interval decreased and soon became zero.

5.4 Experimental evaluation

Based on the All Spot and Special Spot scenario which are the same to all users and Favorite
Spot scenario which is various for every user, we compare our method with a variety of

Fig. 9 Favorite places and behavior similarity of users
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competing methods grouped into the three categories: Classification Method, Anomaly
Detection Method and Deep Learning Method.

Feature selection strategy In order to evaluate traditional classifications for competition,
we generate some features from the trajectories of the two groups of users. Here, we do not
claim that our strategy is the best while it is a reasonable strategy as evaluated by various
experiments.

Our feature generation approach has good usability for the following reasons. First, our
dataset containing a total of 2582 sensor points and the timestamp is continuous; our exper-
iments show that these data are too sparse for these dimensions to be treated directly as
features. Second, based on TraClass [22], we attempt to use region-based and trajectory-
based cluster method. We calculate the homogeneous regions, that is, those containing
trajectories mostly of the same class. We found that more than 96 percent of points vis-
ited by addicts are also visited by residents. Therefore, the region-based method doesn’t not
suit our data. We therefore use a trajectory-based cluster approach to reduce the number of
trajectories in the pre-processing stage. Then, we define the features by considering both
trajectory patterns and activity time. As described in previous work by Zheng [28, 30, 45],
we generate 12 trajectory-level features: active scope, trajectory duration, trajectory length,
speed, velocity change rate, head change rate, track curve, activity pattern, minimum speed,
maximum speed, variance of speed, and number of large-angle rotations. Besides the above
human-defined features, we also introduce time sections as additional features for each tra-
jectory, where a day of 24 hours is split into 96 sections that represents both hourly and
daily preference variance. Overall, we obtain 108 features for classification and tag each
trajectory with an addict or resident label.

Classification method (CM) We use a two-step framework to perform the identification
task. In the first step, classification methods including support vector machine (SVM), naive
Bayes (NB), random forest (RF), logistic regression (LR), gradient-boosting decision tree
(GBDT) and k-nearest neighbor (KNN) are fitted to the training set using the above features
to classify whether a trajectory belonged to a suspect. In the second step, the prediction
results for each trajectory of the first step is used to predict user groups by applying the
same classification method as in the previous step, similar to a voting mechanism.

Anomaly detection (AD) AD methods are unsupervised and find outliers by measuring the
deviation of a given data point from its neighbors. In this work, we use one-class SVM
(OCSVM) and isolation forest (iForest) to identify addicts, where only negative instances
are in the training set. The features of AD methods are the same as those of CF methods.

Deep learning (DL) These methods which use the basic idea of human mobility prediction,
including DeepMove [8], LSTM [16] and HST-LSTM [20]. LSTM-CNN uses LSTM (long
short-term memory) architecture to generate trajectories and time sections as joint features.
In order to do justice to the classification part and to demonstrate that our model could
extract and learn latent solid representations through graphs, CNN, as in SEMP , is used to
classify users. We also use FastText as a baseline which is used by Facebook and is a library
for efficient learning of word representations and text classification [17], as one of our base-
lines to compute vector representations of points (as words) or movement paths (as text) for
classification. We feed our data to FastText without time information, because our aim is
to examine whether the model would work when solving the problem from the perspective
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of locations only. We also use some semi-supervised learning learning models on graph-
structured data, including GCN (graph convolutional networks) [19], GraphSAGE [15], and
GAT (graph attention networks) [36], which can learn graph structures by leveraging node
feature information. Although these models show excellent performance in public datasets,
they cannot solve the dynamic network problem effectively. Thus, we construct graphs con-
sisting of a person’s total trajectories using all points in the dataset, where the size of the
adjacency matrix is 2615 × 2615.

Scenario embeddingmodel (SEM) Our path-based model SEMP and graph-based model
SEMG are implemented in the special spots and favorite spots datasets. We do not imple-
ment them in the all spots dataset as it would not have been possible to form graphs
effectively owing to the scattered data.

Hyperparameters Python libraries including Pytorch 1.0.1, torch geometric 1.0.3, and
NetworkX 2.2 were used to build our models. The embedding dimensions of each graphlet
and position are both 128 with regard to time. The first convolution group of the neu-
ral network includes two convolution layers where both of them use C filters, of size
2 × embedding size and 3 × embedding size, respectively. The second convolution group
also includes two convolution layers, one of size C ×2×C and the other of size C ×3×C.
C in our experiments is set to 100. A max-pooling layer is used to maintain a fixed matrix
size despite variable inputs [18]. All of the three graph neural networks we implemented
use two convolutional layers: the first layer projects the feature dimension from 80 to 16,
and the second layer converts the feature dimension to 1 then we flat the matrix. Finally, a
fully connected layer is used to classify if the user is an addict. All other parameters in the
three models are set to the default values in torch geometric.

Afterward, we continue to train the model on the full training data for a fixed number
of epochs (e.g., 10, 100 epochs). We optimize the parameters with 10-fold cross-validation
by further dividing the training set into 70% for model fitting and 30% for validation. And
since the number of positive instances (addicts) is extremely scarce in our experiment, we
use under-sample method on negative instances (residents) to balance the data in the training
process, the ratio of under-sampling is 0.2.

Result analysis The precision, recall, and F-score of classification are measured on a real-
life dataset. The results are shown in Table 3. First, the AD methods are less capable than
other methods, which means their trajectories are diverse and difficult to cluster. Second,
the precision of CF methods based on human-selected features is much lower than that of
our SEM . This indicates that the movement pattern features used in previous trajectory
classification studies are not discriminative in our dataset.

Third, LSTM-CNN performs more worse than CF methods, as the target of the LSTM
process is a single trajectory tag, which may lose large amounts of information regarding
trajectories during training. Therefore, the output vectors of LSTM are not effective during
the CNN classification process. LSTM-CNN can be treated as another two-step method that
learns features by modeling instead of by human definition. Furthermore, the performance
of FastText indicates that trajectory data cannot not be considered simply as context. Unlike
words organized in paragraphs, here, the number of distinct points is relatively small and
the composition patterns of points are totally different from natural language patterns. The
three graph neural networks perform better than classical CF and AD, as they attempt to
learn graph structures and have a more powerful ability to represent nodes; however, they
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Table 3 Performance evaluations with classification categories

Category Method Favorite points Special points All points

Precision Recall F-score Precision Recall F-score Precision Recall F-score

CF RF 0.032 0.675 0.062 0.020 0.758 0.039 0.028 0.786 0.054

NB 0.016 0.723 0.031 0.016 0.812 0.032 0.017 0.768 0.032

SVM 0.012 0.793 0.023 0.016 0.937 0.031 0.013 0.784 0.022

GBDT 0.037 0.681 0.071 0.027 0.684 0.052 0.030 0.802 0.058

LR 0.056 0.708 0.103 0.033 0.708 0.103 0.012 0.684 0.023

KNN 0.060 0.232 0.0905 0.017 0.573 0.033 0.037 0.778 0.023

AD OCSVM 0.008 0.407 0.015 0.009 0.442 0.017 0.018 0.912 0.036

iForest 0.012 0.971 0.024 0.013 0.961 0.022 0.027 0.981 0.052

DL LSTM 0.018 0.742 0.035 0.031 0.851 0.060 0.018 0.915 0.035

LSTM-CNN 0.024 0.956 0.047 0.034 0.963 0.067 0.021 0.892 0.041

FastText 0.012 0.489 0.024 0.011 0.506 0.022 0.013 0.637 0.026

GCN 0.091 0.352 0.146 0.052 0.470 0.095 0.027 0.338 0.051

GraphSAGE 0.087 0.191 0.120 0.056 0.154 0.083 0.045 0.27 0.077

GAT 0.09 0.400 0.148 0.083 0.428 0.139 0.081 0.437 0.137

Ours SEMP 0.136 0.601 0.221 0.281 0.175 0.215 0.191 0.650 0.295

SEMG,all 0.034 0.689 0.065 0.085 0.350 0.137 − − −
SEMG,complex 0.227 0.250 0.238 0.082 0.57 0.143 − − −

perform worse than our models, because our models consider graph structures around key
points, locally but precisely, even when the graphs are dynamic.

To demonstrate the effectiveness of our SEMs, we test SEMG in both of the favorite
points and the special points datasets while ignore the all points dataset as it does not
contain scenarios. For graph-based model SEMG , as nearly half of the total graphlets are
one-node and two-node graphlets, we consider two options: either using all graphlets, denot-
ing SEMG,all , or omitting one-node and two-nodes graphlets, denoting SEMG,complex .
As shown in Table 2, addicts have many more trajectories in favorite spots than in spe-
cial spots, such that trajectories in favorite spots are denser and more complex. Therefore,
SEMG,complex shows the best performance in the favorite spots scenario because it contains
more complex structural features, whereas the precision of SEMP is better than that of
SEMG on the special spots data because the scenarios are the same for all users in this case.

Overall, end-to-end methods have better performance than two-step methods with either
human-selected features or learned features. Moreover, the types of scenarios and the den-
sity of trajectories affect the effectiveness of the SEM . Finally, we do not claim that our
SEM is better than all other methods; however, our results demonstrate that it is a more
suitable strategy for use in our raw dataset, in which the data are scattered and sparse.

6 Related work

Spatial-temporal pattern mining has emerged as an active research field, like urban traf-
fic network analysis, automatic intersection recognition, and movement behavior mining.
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In this section, we provide a brief review of the related works, including two categories:
movement pattern mining and behavior understanding.

6.1 Movement patternmining

The enormous amount of spatial-temporal data could be used to mine movement pattern.
Gong [12] proposes a methodology to detect five travel models (walk, car, bus, subway and
commuter rail) from the amount of data generated by GPS in New York. In article [10],
Pinelli proposes an extension of the sequential pattern mining paradigm to analyze the tra-
jectories of moving objects. REMO (Relative Motion) [21] method is based on a traditional
cartographic approach of comparing snapshots and develops a comparison method based on
motion parameters to reveal the movement patterns. Article [23] presents a complete and
computationally tractable model for estimating and predicting trajectories based on sparse
sampling, anonymous GPS land-marks that called GPS snippets. For example, Chen et al.
[6] identifies spatio-temporal patterns from GPS traces of taxis for night bus route planning.
Luo et al. [26] tries to reflect the common routing preference of past passengers by finding
the most frequent path of a certain period. da Silva et al. [31] discovers and explains move-
ment patterns of a set of moving objects (e.g. track management, bird migration, disease
spreading). These previous works give us inspirations for representation of a trajectory, and
traditional machine learning approaches proposed in these works have been built baselines
for comparison in Section 5.

6.2 Behavior interpretation

A number of techniques for understanding user behaviors have also been proposed. For
example, article extracts user features from subway transit records and explores abnormal
traveling behaviors to discovery the pickpocket suspects [7]. Along the line of location-
based anomaly detection, a framework that learns the context of different functional regions
in a city is presented, which provides the basis of our feature extraction approach [40].
Traditional trajectory-based similarity calculations use the longest common substring to cal-
culate the similarity of user history trajectories [24]. Abul proposes a W4M (wait for me)
method, which uses edit distance to measure the similarity of different paths [2]. Consider-
ing the mobility similarity between user group, Zhang et al. [41] proposes GMove modeling
method to share significant movement regularity. In recent research, some deep learning
methods are applied to encode the trajectory. ST-ResNet [42] is designed to forecast the
flow of the crowd. DeepMove [8] model predicts human mobility with recurrent attention
network, while HST-LSTM [20] capture location prediction by Spatial-Temporal LSTM.
Our work refers some ideas to above mentioned embedding techniques, but unlike classical
classification models, our model describes users’ behaviors from their movement scenarios
and classifies users by convolutional neural network without selecting effective features.

7 Discussion

Here, we summarize our findings based on the experimental results and also discuss the
differences between the datasets.

1) The behavior records are sparse and scattered. We found that different types of users
have different behaviors: residents usually choose to visit main streets and CBD,



Geoinformatica

whereas trajectories of addicts are scattered irregularly across the city. Moreover, even
people in the same group (residents or addicts) showing little similarity in their activ-
ity behaviors. The quality of sensor records is not as high as that of GPS data. Hence,
the performance of traditional machine learning methods based on points is relatively
poor (in Section 5.3).

2) The trajectory patterns are complex and diverse. Trajectories of addicts are shorter and
more straightforward than those of ordinary residents. Given a specific scenario, the
transit mode preferences of suspects are similar to those of residents. For example,
addicts are also likely to go to a station between 8 and 12 am (in Section 5.2).

3) Positive instances are quite limited, and the dataset is very imbalanced. We collect
user movement records from WiFi sensors all over the city for 3 months, together with
a suspect list provided by local security departments. However, many circumstances
may result in loss of tracking of users, such as a user changing their phone, powering
off the phone, and leaving the phone at home. Thus, the periodicity is not apparent, in
other words, the extraction of trajectory features is difficult (in Section 5.1).

4) The SEM is insufficient to describe user intentions. We assume that people visiting
each place with a clear purpose, but in reality we cannot understand an individual’s
mind based simply on their tracking records. Therefore, in many cases, our model
could only have a supplementary role in detecting addicts. We will require stronger
connection information such as call, trading, and social network records in order to
further develop the model.

8 Conclusion and future work

In this paper, we investigate the problem of user identification from a scenario perspec-
tive. We propose a framework based on neural networks and scenario embedding using
trajectories and graph structures. Extensive experiments shows that our end-to-end model
significantly outperformed all the baselines, including classification models and AD models
in a real dataset.

There are several possible future directions for our work. First, we only use geograph-
ical information and time information to embed user behaviors; other information such as
functional region in the city could be used in the future. Second, our current work does not
consider the influence of group activities. We detect addicts based only on their individual
behavior; however, addicts may prefer to travel with other addicts. We plan to add these
features to our model to better describe user movement patterns. Furthermore, our classifi-
cation framework is generalizable; we plan to apply it to other trajectory-based problem in
region function design and public security prediction.
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