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Graph Formalization

Graph. A graph can be represented as G =
IV, €,X,,Xe, 0,0, T,R}, where V is the set of nodes,
£ is the set of edges, X, € RIVIX9x. and X, € RI€Ixdx.
are the feature matrices of nodes and edges, respectively,
and 7 and R are the sets of node types and edge types. For
simplicity, we utilize x, € R%*+ and x, € R%*. to denote
the feature vectors of node v and edge e, respectively. The
function ¢ : V — 7 maps anode v € V to its corresponding
node type ¢(v), while the function ¢ : £ — R maps an
edge e(, ) € £ to its corresponding edge type ¢(€(y. ) ).




Graph Representation Learning

Graph Data Graph Representation Learning Applications
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Graph Representation Learning Techniques

* Graph embedding approaches
* DeepWalk [a], node2vec [b], ...
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* Graph neural networks (GNNs) [c,d,¢e]
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[a] Perozzi B., et al. 2014. Deepwalk: Online learning of social representations. KDD. Neighborhood aggregation

[b] Grover A., et al. 2014. node2vec: Scalable feature learning for networks. KDD.

[c] Kipf, T. N., et al. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
[d] Velickovié, P., et al. 2018. Graph attention networks. ICLR.

[e] Hamilton W L., et al. 2017. Inductive representation learning on large graphs. NeurIPS.




Imbalance Phenomenon

* Information Abundance
* distributed differently across groups

e.g., imbalanced classes: large classes vs small classes

* High-resource groups vs Low-resource groups
* High-resource groups

Abundant data information
(Usually) High performance

* Low-resource groups

Limited data information
(Usually) Low performance

Data split

O Labeled nodes

O Unlabeled nodes§

(a) Input graph

Example:
Imbalanced node
classification

Node representation
learning with different
degrees
(High: degree > 3)

High-resource part

Majority class

® @ @

High-degree nodes

Lt

Low-resource part

Minority class

Low-degree nodes
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Imbalanced Learning on Graphs (ILoGs): Motivation

* Graph data

* Different from vision and language data . =E == EEEE E; }? =-=a
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* Increasing volume of literature on ILoGs
e Problems A graph dataset. Some image datasets.

e Techniques

* Lacking a comprehensive framework to identify the commonalities and disparities
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Imbalanced Learning on Graphs (ILoGs)

High-resource part Low-resource part
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(c) Imbalanced outcomes

Fig. 2: Imbalanced learning on graphs: imbalanced graph resource distribution results in imbalanced outcomes.




Challenges and Solutions

* Challenges
* Graph content -> a wide array of imbalance problems
* How to create an organized taxonomy to categorize these imbalance problems on graphs?
* Imbalance problems -> different techniques
* How to classify the literature from a technical perspective?

e Solutions

e Taxonomies

* Problems and Techniques
* Taxonomy of Problems

e (Class Imbalance and Structure Imbalance

* Node-Level, Edge-Level, and Graph-Level
* Taxonomy of Techniques

* Imbalance types
e What imbalance types?

» The techniques to cope with each imbalance type
* How to cope with each type?




Relationship with Existing Surveys

* Imbalanced Learning Surveys
» Imbalanced classification
* Few-shot learning
* Anomaly detection
* Long-tailed distribution

* Characteristics:
* Focus on imbalanced learning in a general context of in specific tasks, and lack comprehensive coverage of imbalanced learning on graphs

* Graph-Related Imbalanced Learning Surveys
* (lass-Imbalanced Learning
* Anomaly detection
* Few-shot classification
* Fairness learning

* (Characteristics:
* Focus on individual tasks and lack a comprehensive overview of imbalanced learning on graphs

* Our Survey
* Provide a holistic view of imbalanced learning on graphs
» Covering diverse tasks with a focus on both class imbalance and structure imbalance

» Flucidate the shared traits and unique characteristics of the tasks
» Offering fresh insights into their commonalities and differences within the sphere of imbalanced learning on graphs




Contributions

* The first comprehensive survey of ILoGs
* Serve as invaluable resource for both researchers and practitioners

* We propose two novel taxonomies
* Problems and techniques
* Facilitate a thorough understanding of existing literature
* Provide a clear picture of the commonalities and distinctions

* Identify potential future research directions
* Provide insights and guidance for those interested in advancing the SOTA 1n this fast-paced filed

e Scenarios

* The scenarios that graph learning algorithms can involve
* Imbalance is prevalent in the real-world scenarios
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(Conventional) Imbalanced Learning

* Focus on handling imbalanced classes

Definition 1 (Conventional Imbalanced Learning). In the ;OOLabeled nodes
context of conventional imbalanced learning, consider a labeled ' '
data set D = {(z;,y;)}L,, which can be partitioned into ik  Imbalance Ratio
classes (groups) such that D = U, ;< G; (given each group
G; = {(zi,v:) : yi = j}). There exists a notable imbalance in the
number of labeled samples across these groups. Under this setting, D = U1§7;§ K Yi
the imbalanced distribution of samples across groups would give
rise to biases in the performance of a learning algorithm. In par- S
ticular, the low-resource groups, i.e., the classes with less labeled if 7 < 7, then |gz| > |gj|
data, are usually marginalized by the learning model due to the

domination of the high-resource groups, resulting in performance Imbalance ratio

degradation for the former. The goal of imbalanced learning is to G11/1Gk|

develop a balanced model that can improve the performance of low- L/ 19K

resource groups, potentially reaching levels comparable to those of

high-resource groups.

O Unlabeled nodes§

Given K classes

Order them in descending manner




Imbalanced Learning on Graphs

Definition 2 (Imbalanced Learning on Graphs). In addi-
tion to the number of labeled instances, imbalance in graph
data can stem from disparities in structural abundance across
groups, leading to a more complex imbalance pattern. For a given
graph dataset comprising a set of elements (i.e., nodes, edges,
or (sub)graphs) represented as G = {xz;})Y,, these elements
can be further grouped into K subsets, i.e., G = |Ji<;<x Yi,
according to specific criteria based on classes or structures, where
1 < K < N. It is important to note that these groups differ
in terms of information abundance, which results in unequal

performance among them when used as input for a learning model.

Imbalance Ratio

Given K groups
_ N C _
g = {xi}izll ie, G = UlSiSK G;

Order them in descending manner

if 1 < j, then sg, > sg.

Imbalance ratio:

391/39K

What should be done if sg, is noncountable?

15




Existing Graph Imbalance Issues

Imbalance Types

Imbalance Tasks

Settings

Information Abundance s

Explanations

Node-Level
Class
Imbalance

Imbalanced node classification
Node-level anomaly detection

A set of (or two) node classes D = U, <, Ci

|C;i| (# labeled nodes in each class C;)

Labeled nodes are unevenly distributed across
classes.

Few-shot node classification
Zero-shot node classification

A set of base node classes Dy = U, ;< ., Ci,
and novel node classes Dn. = Uy, i<k, Ci

|C;| (# labeled nodes in each class C;)

Base classes have abundant labeled nodes, while
novel classes have few/no labeled nodes.

Edge-Level
Class
Imbalance

Few-shot link prediction

A set of base graphs Dy, = {G;}/, and novel
graphs D, = {Gi} % .., where G; = {V;, &}

|€;| (# edges in each graph G;)

Base graphs have abundant edges, while novel
graphs have limited edges.

Edge-level anomaly detection

Two edge classes D = C1 U Ca

|Ci| (#labeled edges in each class C;)

Labeled edges are unevenly distributed across
classes.

Graph-Level
Class
Imbalance

Imbalanced graph classification
Graph-level anomaly detection

A set of (or two) graph classes D =, <, i Ci

|C:| (# labeled graphs in each class C:)

Labeled graphs are unevenly distributed across
classes.

Few-shot graph classification

A set of base graph classes Dy = U, <;<, Cis
and novel node classes Dn = Uy, i< x, Ci

|C:| (# labeled graphs in each class C;)

Base classes have abundant labeled graphs, while
novel classes have few labeled graphs.

Node-Level
Structure
Imbalance

Imbalanced node degrees

A set of node groups D = J, ., - Gi, where
Gi = {v; : d; = i} (d; is the degree of node v;)

d; (the degree of each node v;)

Head nodes have high degrees, while
tail/cold-start nodes have few/no degrees.

Node topology imbalance

A set of node classes D = U, ;< i Ci

The consistency between true class boundaries
and influence boundaries of labeled nodes

Classes with more consistent boundaries tend to
propagate label information more effectively.

Long-tail entity embedding

A set of entity groups D = J, ., i Gi, where
Gi = {e; : d; =i} (d; is the # triplets of entity e;)

d; (# triplets of each entity e;)

Head entities have more triplets, while
tail/cold-start entities have few/no triplets.

Edge-Level
Structure
Imbalance

Few-shot relation classification
Zero-shot relation classification
Few-shot reasoning on KGs

A set of base relations Dy = U, <;<x, Ri,
and novel relations Dn = Uy, <<k, Ri

|R:| (# labeled triplets of each relation R;)

Base relations have abundant labeled triplets,
while novel relations have few/no labeled
triplets.

Graph-Level
Structure

Imbalanced graph sizes

A set of graph groups D = |J, ., i Gi, where
Gi = {G; : |V;| = i} (|V;] is the size of graph G)

|V;| (the size of each graph G;)

Head graph have large sizes, while tail graphs
have small sizes.

Imbalance

Imbalanced topology groups

A set of topology motifs D = |, ., Mi

| M;| (# instances of each motif M, in one class)

Motifs with more instances have stronger
associations with the class than the less frequent

motifs.

TABLE 1: Category of existing graph imbalance issues.
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Overview of Taxonomies

Imbalanced Learning on Graphs: Problems
|
1

Structure Imbalance

Class Imbalance

Node-Level Structure Imbalance

Node-Level Class Imbalance

Imbalanced Node Classification Imbalanced Node Degrees

Node-Level Anomaly Detection Node Topology Imbalance

Long-Tail Entity Embedding

Few-Shot Node Classification

Imbalanced Learning on Graphs: Techniques

[
Improving the Low-Resource Part

Balancing High/Low-Resource Parts

Zero-Shot Node Classification Edge-Level Structure Imbalance

Few-Shot Relation Classification

Edge-Level Class Imbalance

Few-Shot Link Prediction Zero-Shot Relation Classification

Edge-Level Anomaly Detection Few-Shot Reasoning on KGs

Graph-Level Structure Imbalance

raph-Level Class Imbalance

Imbalanced Graph Classification Imbalanced Graph Sizes

Imbalanced Topology Groups

Graph-Level Anomaly Detection

Few-Shot Graph Classification

Fig. 3: Taxonomy of Problems.

Knowledge Transfer

Meta-Learning

Model Pre-training

Knowledge Distillation

Common Knowledge Sharing

Auxiliary Data

Data Reweighting and Resampling

Synthetic Data Generation

SMOTE

Generative Adversarial Nets

Additional Constraints

Fig. 4: Taxonomy of Techniques.
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Problems of I1LoGs

* Categories

e Class Imbalance
e Structure Imbalance

Imbalanced Learning on Graphs: Problems

|

Class Imbalance

Structure Imbalance

Node-Level Class Imbalance

Imbalanced Node Classification

Node-Level Anomaly Detection

Few-Shot Node Classification

Zero-Shot Node Classification

Edge-Level Class Imbalance

Few-Shot Link Prediction

Edge-Level Anomaly Detection

raph-Level Class Imbalance

Imbalanced Graph Classification

Graph-Level Anomaly Detection

Few-Shot Graph Classification

Node-Level Structure Imbalance

Imbalanced Node Degrees

Node Topology Imbalance

Long-Tail Entity Embedding

Edge-Level Structure Imbalance

Few-Shot Relation Classification

Zero-Shot Relation Classification

Few-Shot Reasoning on KGs

Graph-Level Structure Imbalance

Imbalanced Graph Sizes

Imbalanced Topology Groups

Fig. 3: Taxonomy of Problems.




Imbalanced Node Classification (1)

* Settings

A set of (or two) node classes D = |J; ;< g Ci

Embedding space

e Information Abundance

wn
n
<
—
o
et
Q
&
wn
Q
=
o
=
=

|C;i| (# labeled nodes in each class C;)

° Expl anatlons (a) Long-tailed class distribution (b) Head/tail classes and their embeddings

H H """"“ 1ITTTTTTTR ' Head classes

All classes in Email dataset | Tail classes 0.0

* Labeled nodes are unevenly distributed Figure 1: Illustration of imbalanced classes.
across classes.




Imbalanced Node Classification (2)

Techniques Literature

Constraints DRGCN [35], DPGNN [60], TAM [61]
Knowledge distillation LTEA4G [62]

GAN DRGCN [35], ImGAGN [37]
SMOTE GraphSMOTE [25]
Data-level Mixup GraphMixup [64], GraphSANN [66], GraphENS [65]
Resampling LTE4G [62], ALLIE [68]
Reweighting TAM [61]

Algo-level

TABLE 2: Summary of imbalanced node classification.

* Summary
* Challenge
* Achieving balanced information distribution across classes for uniform model training

* Possible Further Explorations
 Innovative techniques: e.g., diffusion models [a]

[a] Rombach R., et al. 2022. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR.




Node-Level Anomaly Detection

* Summary

» A special case of Imbalanced Node Classification

e Possible further exploration
 Diffusion models [a]

* Foundational models [b]
* More references & e

GNN [76], [97]-123]
GA [124]-[130]

[ a C OmprehenSive Survey [C] Node-level Heterogeneous GE [131], [132]

GNN [36], [74], [75], [122], [133]-[148]

GA [79], [149]-[156]

* Benchmarks: e.g., [d] Dymamie | S8 L oo hen

 Leaderboards: e.g., [e] oo |G -

GA [77], [170]
Dynamic GE 78
GNN [171], [172]

GA [173]-[178]
GNN [71], [72], [179], [180]

Heterogeneous GA [181]
GA [182], [183]

[a] Rombach R., et al. 2022. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR. preme | ow (]
[b] Bommasani R., et al. 2021. On the Opportunities and Risks of Foundation Models. arXiv. TABLE 3: Summary of anomaly detection on graphs.

[c] Ma X., et al. 2021. A Comprehensive Survey on Graph Anomaly Detection with Deep Learning. TKDE.
|
|

Homogeneous

d] Liu K., et al. 2022. BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs. NeurIPS.
e] https://dgraph.xinye.com/leaderboards/dgraphfin




Few-Shot Node Classification (1)

* Settings
A set of base node classes Dy = |, <; <, Ci, Explainable AI Support
and novel node classes Dr, = Uy, oi< g, Ci

Meta-train tasks
(base classes)

Support

* Information Abundance @ ()

Transferable

IC;| (# labeled nodes in each class C;)

Meta-test tasks
(novel classes)

* Explanations

» Base classes have abundant labeled IlOdCS, (a) Base and novel classes on graph ~ (b) Few-shot node classification
while novel classes have few/no labeled
nodes.




Few-Shot Node Classification (2)

Meta-learning techniques Other techniques
MAML Prototypical network Label generation | Contrastive Learning

Generic FSNC [57], [187]1-[189] | [26], [58], [190]-[193] [194] [195], [196]
Generalized FSNC - [198], [199] - -
Multi-label FSNC - [201] - ‘
FSNC with extremely weak supervision - - [202] -
FSNC on HINs [30], [203] - -

TABLE 4: Summary of few-shot node classification.

* Summary
* Challenge

* How to extract transferable knowledge from base classes to benefit novel classes

* Possible Further Exploration
* Specific settings remain largely underexplored
* Generalized; multi-label; extremely weak supervision; FSNC on HINs
* Innovative techniques
* Prompt tuning [a]; generative models like diffusion [b]
* A Comprehensive Survey

* [c]

[a] Liu Z., et al. 2023. GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks. WWW.
[b] Rombach R., et al. 2022. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR.
[c] Zhang C., et al. 2022. Few-Shot Learning on Graphs. [JCALI




Z.ero-Shot Node Classification

e Characteristics

 Necessitate the absence of labeled data for novel Explainable AT o
classes during model training o -

(base classes) Support Query

* A special case of Few-Shot Node Classification
: 06 @

Transferable

Support

* Summary |
Meta-test tasks
{176' vy, Vg, vg} (novel classes) ?

* Still underexplored
* Due to the absence of descriptions for elements like

nodes, edges, or graphs

e A formalization of ZSNC
* |a]

O Base classes @ Novel classes

(a) Base and novel classes on graph (b) Few-shot node classification

[a] Wang Z., et al. 2021. Zero-shot Node Classification with Decomposed Graph Prototype Network. KDD.




Few-Shot Link Prediction

* Settings
A set of base graphs Dy, = {G;},-%, and novel
graphs D,, = {Gi}f{jKlﬂ, where G; = {V;,&:}

* Information Abundance
E’J\/ B1

|E;| (# edges in each graph G;) 2 CGIJ / o8

- : &)
Valentine's Day Electronics Shopping Festival Women’s Beauty Festival Sports Festival

* Explanations
Fig. 1. An example of overlapping EBSNs generated by product share records on an
® Base graphs have abundant edges, e-commerce platform, where B and G denote boys and girls, respectively.

while novel graphs have limited edges.

* Summary

 Still underexploited

* Other settings

* Few-shot link prediction across different
sections of a single graph




Edge-Level Anomaly Detection

* Summary
. . . Graph objects Graph types Base models Literature
* A special case of Imbalanced Edge Classification oA 0]

GE [91]-[96]
GNN [76], [97]-[123]

GA [124]-[130]

g Challenge Node-level Heterogeneous GE [131], [132]

GNN [36], [74], [75], [122], [133]-[148]

* The highly imbalanced distribution of normal and GA 79 [145]-{156]

abnormal edges Dynamic GNN (73], [162]-{166]
Homogeneous GNN [167], [168]
Heterogeneous GNN [169]

e Possible further exploration Edgelevel GA (771, [170]

. . Dynamic GE [78]
* Investigation on HINs GNN [171], [172]

GA [173]-[178]
GNN [71], [72], [179], [180]

Heterogeneous GA [181]

GA [182], [183]
GNN [184]

Homogeneous

Homogeneous

Graph-level

* More references
e a comprehensive survey [a]

Dynamic

TABLE 3: Summary of anomaly detection on graphs.

[a] Ma X., et al. 2021. A Comprehensive Survey on Graph Anomaly Detection with Deep Learning. TKDE.




Imbalanced Graph Classification

e, B o1

Class A

* Information Abundance
|C;i| (# labeled graphs in each class C;) &

A set of (or two) graph classes D = |, < ;< Ci

* Explanations Class B

* Labeled graphs are unevenly distributed across classes.

* Summary
* Scenarios
e ¢.g., imbalanced chemical compound classification
* Still underexploited




Graph-Level Anomaly Detection

® Summ aI’y Graph objects | Graph types | Base models Literature
GA [80]-{90]

* A special case of Imbalanced Graph Classification I GE [91]-[96]
ornogeneous GNN [76], [97]-[123]

GA [124]-130]
Het GE [131], [132]
Challenge Node-level SRR GNN [36], [74], [75], [122], [133]-[148]

* The highly imbalanced distribution of normal and abnormal Ga 179), ot fi5e)

graphs Dynamic GNN (73], [162}-[166]
Homogeneous GNN [167], [168]

Heterogeneous GNN [169]
Approaches Edge-level : o R
* Determine node- or edge-level anomaly scores and Dynarnic GE (78]

GNN 171], [172
aggregate to gauge graph-level anomalies oA i1731 Emi
* Graph-level embedding -> anomaly scores Homogeneous | o\ [71], [72], [179], [180]

Graph-level Heterogeneous GA [181]

. . . GA 182], [183
Possible further exploration Dynamic | Gy oy

* Investigation on HINs

TABLE 3: Summary of anomaly detection on graphs.

More references
e a comprehensive survey [a]

[a] Ma X., et al. 2021. A Comprehensive Survey on Graph Anomaly Detection with Deep Learning. TKDE.




Few-Shot Graph Classification (1)

* Settings

A set of base graph classes Dy = U, ;<. Ci,
and novel graph classes D = Uk, <;<k, Ci

e Information Abundance

|Ci| (# labeled graphs in each class C;)

* Explanations

* Base classes have abundant labeled
graphs, while novel classes have few
labeled graphs.

Support Set Query Set

v v & &%
> s | (B R
Wk & W | Y B

K shots Q queries

17,]
(D]
[77]
[72]
=
Q
2

Figure 1: An N-way K-shot episode. In this example, there are N = 3 classes. Each class has
K = 4 supports yielding a support set with size N * K = 12. The class information provided by the
supports is exploited to classify the queries. We test the classification accuracy on all NV classes. In
this figure there are () = 2 queries for each class, thus the query set has size NV x () = 6.




Few-Shot Graph Classification (2)

Meta-learning techniques
MAML | Prototypical network

Other techniques

Generic FSGC [219] [220], [221] Adaptive step controller [219], super-class graph [222], task correlations [220]
Cross-domain FSGC - - Data augmentation [223]
Few-shot temporal graph classification [224] [224] -

Few-shot molecular property prediction || [225]-[228] - Meta-task reweighting [226], implicit function theorem [229]

TABLE 5: Summary of few-shot graph classification.

* Summary
* Challenge

 Effectively transferring knowledge from base graph classes to novel graph classes to enhance the
performance of the latter

* Possible further exploration

* E.g., cross-domain scenario FSGC; FSGC on temporal graphs
* FSGC on HINs




Imbalanced Node Degrees (1)

Tasks

* Tail node embedding
* Cold-start node embedding

Settings
A set of node groups D = |J, ., - Gi, where
Gi = {vj : dj =i} (d; is the degree of node v,)

Information Abundance
d; (the degree of each node v;)

Explanations

* Head nodes have high degrees, while
tail/cold-start nodes have few/no degrees.
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(b) Classification performance

Figure 1: Distribution of node degree and its relationship to
the quality of embedding vector on the Wiki network.
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Figure 1: Illustration of tail nodes.




Imbalanced Node Degrees (2)

Tasks Degree-aware modulation | Meta-learning | Knowledge distillation Other techniques

Neighborhood translation [27]
Tail node embedding [233], [234] [18], [235], [236] Hybrid-order proximities [237]
Reweighting [238]-[240]

Cold-start node embedding - - _

Reweighting [241], [242]
Graph geometric embedding [243]

Open knowledge enrichment [249]
Synthetic data generation [250]

Node topology imbalance

Long-tail entity embedding on KGs [244] [245]-[248]

TABLE 6: Summary of node-level structure imbalance.

* Summary
* Challenge
* Efficient knowledge transfer from head nodes to tail or cold-start nodes

* Possible further exploration
* Cold-start node embedding is still underexploited

* The possible usage of knowledge distillation for tail node embedding




Node Topology Imbalance

Settings

A set of node classes D = J, ;< i Ci

Information Abundance

* The consistency between true class
boundaries and influence boundaries of
labeled nodes

Explanations

* Classes with more consistent boundaries
tend to propagate label information more
effectively.

Summary
* Still an underexploited problem

‘. . Unlabeled Node e 3 [abeled Node X Influence Conflict Y Influence Insufficient

Figure 1: Schematic diagram of the topology-imbalance issue in node representation learning. The
color and the hue denote the type and the intensity of each node’s received influence from the labeled
nodes, respectively. The left shows that nodes close to the boundary have the risk of information
conflict and nodes far away from labeled nodes have the risk of information insufficient. The right
shows that our method can decrease the training weights of labeled nodes (R1) close to the class
boundary and increase the weights of labeled nodes (B and R2) close to the class centers, thus
relieving the topology-imbalance issue.




Imbalanced Graph Sizes

* Settings

A set of graph groups D = |J, ., x Gi, Where
Gi = {G, : |V;| = i} (|V;| is the size of graph G;)

\®)
S
S
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—— FRANKENSTEIN B FRANKENSTEIN
* Information Abundance

|V;| (the size of each graph G;) & II II II_Il
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° EXpl anations (a) Long-tailed graph distribution (b) Graph classification performance

* Head graph have large sizes, while Figure 1: Illustration of long-tailed distribution.
tail graphs have small sizes.

* Summary
 Still underexploited




Imbalanced Topology Groups

* Settings

A set of topology motifs D = |, <, Mi

e Information Abundance 2: if: F :i

| M| (# instances of each motif M; in one class) ; {:

Minority Sub-class
Group

Mutagenic Non-Mutagenic
eocC O eN eH S No: A NH,

® EXpl an atlons Figure 1: Example of'sub-class topology level graph imbalanc.e on dqtaset Mutag [12]. Molecu!ar
graphs of the Mutagenic class have two topology groups, one with motif NO5 and another one with

° MOtlfS Wlth more instanc es have motif N Hy [13]. The NO, group is much larger in quantity compared to the N Hy group.
stronger associations with the class
than the less frequent motifs.
* Summary
 Still underexploited




Existing Graph Imbalance Issues

Imbalance Types

Imbalance Tasks

Settings

Information Abundance s

Explanations

Node-Level
Class
Imbalance

Imbalanced node classification
Node-level anomaly detection

A set of (or two) node classes D = U, <, Ci

|C;i| (# labeled nodes in each class C;)

Labeled nodes are unevenly distributed across
classes.

Few-shot node classification
Zero-shot node classification

A set of base node classes Dy = U, ;< ., Ci,
and novel node classes Dn. = Uy, i<k, Ci

|C;| (# labeled nodes in each class C;)

Base classes have abundant labeled nodes, while
novel classes have few/no labeled nodes.

Edge-Level
Class
Imbalance

Few-shot link prediction

A set of base graphs Dy, = {G;}/, and novel
graphs D, = {Gi} % .., where G; = {V;, &}

|€;| (# edges in each graph G;)

Base graphs have abundant edges, while novel
graphs have limited edges.

Edge-level anomaly detection

Two edge classes D = C1 U Ca

|Ci| (#labeled edges in each class C;)

Labeled edges are unevenly distributed across
classes.

Graph-Level
Class
Imbalance

Imbalanced graph classification
Graph-level anomaly detection

A set of (or two) graph classes D =, <, i Ci

|C:| (# labeled graphs in each class C:)

Labeled graphs are unevenly distributed across
classes.

Few-shot graph classification

A set of base graph classes Dy = U, <;<, Cis
and novel node classes Dn = Uy, i< x, Ci

|C:| (# labeled graphs in each class C;)

Base classes have abundant labeled graphs, while
novel classes have few labeled graphs.

Node-Level
Structure
Imbalance

Imbalanced node degrees

A set of node groups D = J, ., - Gi, where
Gi = {v; : d; = i} (d; is the degree of node v;)

d; (the degree of each node v;)

Head nodes have high degrees, while
tail/cold-start nodes have few/no degrees.

Node topology imbalance

A set of node classes D = U, ;< i Ci

The consistency between true class boundaries
and influence boundaries of labeled nodes

Classes with more consistent boundaries tend to
propagate label information more effectively.

Long-tail entity embedding

A set of entity groups D = J, ., i Gi, where
Gi = {e; : d; =i} (d; is the # triplets of entity e;)

d; (# triplets of each entity e;)

Head entities have more triplets, while
tail/cold-start entities have few/no triplets.

Edge-Level
Structure
Imbalance

Few-shot relation classification
Zero-shot relation classification
Few-shot reasoning on KGs

A set of base relations Dy = U, <;<x, Ri,
and novel relations Dn = Uy, <<k, Ri

|R:| (# labeled triplets of each relation R;)

Base relations have abundant labeled triplets,
while novel relations have few/no labeled
triplets.

Graph-Level
Structure

Imbalanced graph sizes

A set of graph groups D = |J, ., i Gi, where
Gi = {G; : |V;| = i} (|V;] is the size of graph G)

|V;| (the size of each graph G;)

Head graph have large sizes, while tail graphs
have small sizes.

Imbalance

Imbalanced topology groups

A set of topology motifs D = |, ., Mi

| M;| (# instances of each motif M, in one class)

Motifs with more instances have stronger
associations with the class than the less frequent

motifs.

TABLE 1: Category of existing graph imbalance issues.
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Techniques of ILoGs

* Categories

* Improving the Low-Resource Part
* Examples

* few-shot node classification Imbalanced Learning on Graphs: Techniques

* tail/cold-start node representation | I 1

learning Improving the Low-Resource Part Balancing High/Low-Resource Parts

¢ BalanCing ngh/ LOW—RGSOUI’CG PaI‘tS — Knowledge Transfer - Data Reweighting and Resampling

e £Xx amp les Meta-Learning — Synthetic Data Generation

* imbalanced node/edge/graph Model Pre-training t SMOTE

classification

Knowledge Distillation Generative Adversarial Nets

Common Knowledge Sharing Additional Constraints

Auxiliary Data

Fig. 4: Taxonomy of Techniques.




Improving the Low-Resource Part: Knowledge Transfer — Meta-Learning

* Meta-Learning: Learning to learn

Meta learning datasets
EPISODE 1

Support set Target set

7 e
= b
? ?

EPISODE 2

Support set Target set

MK P

?




Improving the Low-Resource Part: Knowledge Transfer — Meta-Learning

* MAML [a] * Prototypical network [b]
* Model-Agnostic Meta-Learning

— meta-learning
0 ---- learning/adaptation

’l
*l

1° (a) Few-shot (b) Zero-shot

Figure 1. Diagram of our model-agnostic meta-learning algo- Figure 1: Prototypical networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes
rithm (MAML), which optimizes for a representation @ that can ci are computed as the mean of embedded support examples for each class. Right: Zero-shot
quickly adapt to new tasks. prototypes ci are produced by embedding class meta-data v. In either case, embedded query points

are classified via a softmax over distances to class prototypes: ps(y = k|x) o< exp(—d(fe(x),ck)).

[a] Finn C., et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.
[b] Snell J., et al. Prototypical Networks for Few-shot Learning. NeurIPS 2017.




Improving the Low-Resource Part: Knowledge Transfer — Model Pre-training

(" attribute edge ) ( node link community

generation generation classification prediction detection

gty sty sty gt ats
GPT-GNN (0) = GPT-GNN GPT-GNN | _ .. | GPT-GNN

initialization
with
pre-trained
parameters 6"

input graph with partial
\_ attributes and edges masked )

Pre-Training Fine-Tuning

downstream tasks with only few labeled data

Figure 1: The pre-training and fine-tuning flow of GPT-GNN:
First, a GNN is pre-trained with the self-supervised learning
task—attribute and structure generations. Second, the pre-
trained model and its parameters are then used to initialize
models for downstream tasks on the input graph or graphs
of the same domain.

[a] Hu Z., et al. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.




Improving the Low-Resource Part: Knowledge Transfer — Knowledge Distillation

* Knowledge: Teacher Model — Student Model

4 soft labels
predictions

distilled| knowledge

4N . hard labels
rainad | predictions € true label

Training data

Student

[a] https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764.




Improving the Low-Resource Part: Knowledge Transfer — Common Knowledge Sharing

* Knowledge: High-Resource part — Low Resource Part

Globally shared (learnable)
r

Ideal
neighborhood

"
I Observed

cell, cnn .
nelghbirhood ] Key p OintS:
. , Context I . . .
protein, g (bioinf) * Identity (or consistency) between high- and

gene, dna

Context
(bio)

o low-resource parts
gpt. bert, nip! |

High-resource — sufficient — learn knowledge
e information ? Low-resource — insufficient — incorporate

Context
5 rotein, ..
&) protein, P Missing

gene, cnn (cell, cnn)
L

knowledge — fulfill this identity

attention

(a) Toy network  (b) Neighborhood translation  (c) Neighborhood translation
for head nodes for tail nodes

Figure 2: Illustration of neighborhood translation.

[a] Liu Z., et al. Tail-GNN: Tail-Node Graph Neural Networks. KDD 2021.




Improving the Low-Resource Part: Auxiliary Data

* Auxiliary data: supplemental information
» Text data

seen classes:
Nerual Network
Rule Learning
unseen classes:
Genetic Algorithms
: Case based

Figure 1: An example of zero-shot node classification.

[a] Yue Q., et al. Dual Bidirectional Graph Convolutional Networks for Zero-shot Node Classification. KDD 2022.




Balancing the High- and Low-Resource Parts: Data Reweighting and Resampling

* Data reweighting and resampling
 Balancing the contribution of different parts

‘. . Unlabeled Node e 38 [ abeled Node X Influence Conflict Y Influence Insufﬁcient}

Figure 1: Schematic diagram of the topology-imbalance issue in node representation learning. The
color and the hue denote the type and the intensity of each node’s received influence from the labeled
nodes, respectively. The left shows that nodes close to the boundary have the risk of information
conflict and nodes far away from labeled nodes have the risk of information insufficient. The right
shows that our method can decrease the training weights of labeled nodes (R1) close to the class
boundary and increase the weights of labeled nodes (B and R2) close to the class centers, thus
relieving the topology-imbalance issue.

[a] Chen D., et al. Topology-Imbalance Learning for Semi-Supervised Node Classification. NeurIPS 2021.




Balancing the High- and Low-Resource Parts: Synthetic Data Generation

« SMOTE [a] (synthetic minority over-sampling technique) ° G AN [C] (generative adversarial nets)
* Mixup [b]

Latent space

® Generated fake

4

x!
e / samples
4
New synthetic data given by: . ‘
s1 = x1 + (rand(0,1) * x2-x1) f Yy
L ) i |
‘ ‘ /
X

y
|

“ Generator(G)

" Discriminator(D)
|

Real
samples F; )
a) Class Imbalance b) SMOTE ne-tuning

[a] Chawla N. V., et al. SMOTE: Synthetic Minority Over-sampling Technique. JAIR 2002.
[b] Zhang H., et al. mixup: Beyond empirical risk minimization. I[CLR 2018.
[c] Goodfellow 1., et al. Generative Adversarial Networks. NeurIPS 2014.




Literature Categorization

Techniques Literature

[18], [31], [57], [75], [107], [187]-[189], [192], [202], [203], [208],
Optimization-based |  [209], [219], [224]-{228], [236], [245], [254], [255], [257], [258],
Meta-learning [272], [278]-[280], [282], [287]

. . [26], [33], [58], [190], [191], [193], [198], [199], [201], [220], [221],
Improving Metric-based [223], [253], [256], [259]-[269], [273], [276]
the Knowledge transfer

low- Model pre-training GNN parameters transfer [194], contrastive learning [195], [196], prompting [197]

resou:ce Knowledge distillation | GNNs to MLPs [56], KG models to MLPs [277], Random knowledge distillation [72]
par

Common Data sharing Super-classes [222]
knowledge sharing |y 1. 461 sharing [27], [34], [233], [234]
Auxiliary data Alignment data [244], auxiliary descriptions [215], [216], [276]

Reweighting [60], [74], [119], [124], [146], [178], [239], [241], [243], [288], resampling [36], [68], [82], [130], [133],
[135], [142]-[144], [144], [147], [164], [171], [240], [242]

. SMOTE SMOTE [25], Mixup [64]-[66
Balancing Synthetic data =] p [641-166]
resource Other methods Predictive data generation [73], [134], label generation [76], [166], [169]

parts

Condition relax constraints [138], [212]-[214], imbalance constraints [61], [111], class separation constraints
Additional constraints [35], [71], [77]-[100], [102]-{106], [108], [110], [112]-[118], [120]-[123], [125]-[129], [131], [132], [136], [137],
[139]-[143], [145]-[162], [165], [167], [168], [170], [172]-[178], [180]-[184], [289]

Reweighting and resampling

TABLE 8: Literature categorization of imbalanced learning on graphs w.r.t. the taxonomy of techniques.




Appropriate Techniques Selection

Step 1 Step 2

Problems Task analysis Technique selection Exploring techniques
from other branches

— Knowledge transfer —

Diffusion models

Improving the low-resource part

Auxiliary dat
ety data Data prompting

Data reweighting and resampling Foundation models

Balancing high/low-resource parts Synthetic data generation

Additional constraints

Fig. 5: Procedure of techniques selection.
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Future Directions

e Future Directions of Problems

* Class Imbalance
» Existing attention: node-level imbalance
e Edge-Level imbalance
* Generic imbalanced graph classification
e Zero-shot graph classification
* May require text information

 Structure Imbalance
» Existing attention: node-level structure imbalance
* Node-level: Generalized node degree [a]
e Graph-level: Imbalanced graph-sizes

* Future Directions of Techniques
* Cross-branch technique exploration

* Novel technique exploration
 Diffusion [b], foundation models [c]

[a] Liu Z., et al. 2023. On Generalized Degree Fairness in Graph Neural Networks. AAAL
[b] Rombach R., et al. 2022. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR.
[c] Bommasani R., et al. 2021. On the Opportunities and Risks of Foundation Models. arXiv.
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Conclusions

e Task of this talk

* A comprehensive review of the literature on ILoGs

* Two comprehensive taxonomies of ILoGs

* Problems
* (Class imbalance
* Node, edge, graph
 Structure imbalance
* Node, edge, graph
e Techniques
* The type of imbalance
* The corresponding strategies to rectify these imbalance

 Future directions
 Problems
* Techniques
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