
Relative and Absolute Location Embedding
for Few-Shot Node Classification on Graph

(Technical Appendices)

Zemin Liu,1 Yuan Fang,1 Chenghao Liu,1,2 Steven C.H. Hoi1,2

1 Singapore Management University, Singapore;
2 Salesforce Research Asia, Singapore

{zmliu, yfang}@smu.edu.sg, {chenghao.liu, shoi}@salesforce.com

A Dataset Details
We provide further details of the datasets. For Amazon, the
feature vector of each node was extracted from the images
of the corresponding item. The categories of items repre-
sent the node classes. For Email, the 128-dimensional fea-
ture vector of each node was generated by DeepWalk. The
departments of the members represent the classes. We re-
moved the classes with less than 10 nodes. For Reddit, we
constructed the feature vector of each node (post) following
GraphSAGE (Hamilton, Ying, and Leskovec 2017), which
consists of four parts: (1) the average embedding of the
words in the title of the post; (2) the average embedding
of the words in the comments of the post; (3) the score of
this post; (4) the number of comments on the post. All word
embeddings are 300-dimensional, computed using the off-
the-shelf GloVe CommonCrawl word vectors. The topical
community of each post serves as the class.

B Algorithms and Complexity Analysis
We summarize the overall training of RALE in Alg. 1, and
the subroutine of loss calculation for a given node set in
Alg. 2. Subsequently, we analyze the complexity.

B.1 Algorithms
Alg. 1 contains the overall training process of RALE. For a
task t, we first adapt the prior Θ on support set St and obtain
Θ′ in lines 6–7; then we calculate the task loss on the query
set Qt based on Θ′ in line 8 and accumulate to the loss of
the batch in line 9. The batch-level loss is backpropagated to
update the prior in line 11.

In Alg. 2, we calculate the loss on a target node set Ot.
Here Ot could be either St or Qt, in order to calculate the
support or query loss, respectively. Specifically, in lines 2–3,
for each node v ∈ Ot we first gather the connecting paths
PSt,v and PH,v for the task-level RL embedding and graph-
level AL embedding, respectively. Next, we obtain the node
embedding and the RL and AL embedding of v in lines 4–6,
which are concatenated in the dependency-aware classifica-
tion layer in line 7. Finally, in line 10, the cross-entropy loss
for all nodes in the target set Ot is computed given the clas-
sification layer.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 1 MODEL TRAINING FOR RALE
Input: graph G = (V, E ,X, C, `), base classes Cb, hub setH, task

adaptation learning rate α, meta-learning rate β.
Output: Prior Θ.
1: Θ← parameter initialization;
2: while not converged do
3: sample a batch of tasks T w.r.t. G and Cb;
4: LT ← 0; . loss of the batch
5: for each task t ∈ T do
6: L(St; Θ)← LOSSCALCULATION(G, t, St,Θ,H);
7: Θ′ = Θ− α ∂L(St;Θ)

∂Θ
; . Eq. (10)

8: L(Qt; Θ′)← LOSSCALCULATION(G, t, Qt,Θ
′,H);

9: LT ← LT + L(Qt; Θ′);
10: end for
11: Θ← Θ− β ∂LT

∂Θ
; . optimizing Eq. (11)

12: end while
13: return Θ.

Algorithm 2 LOSSCALCULATION

Input: graph G = (V, E ,X, C, `), task t, target node set Ot (i.e.,
either St or Qt), parameters Θ, hub setH.

Output: L(Ot; Θ).
1: for v ∈ Ot do
2: PSt,v ← {Ps,v : s ∈ St}; . paths for RL
3: PH,v ← {Ph,v : h ∈ H}; . paths for AL
4: hv ← φg(v; θg); . node embedding
5: eSt

v ← φ(PSt,v; θg, θp); . RL embedding, Eq. (6)
6: eH

v ← φ(PH,v; θg, θp); . AL embedding, Eq. (7)
7: ψ(v; Θ)← SOFTMAX

(
σ(W

[
hv‖eSt

v ‖eH
v

]
)
)
;

8: . classification layer, Eq. (8)
9: end for

10: L(Ot; Θ)← −
∑

v∈Ot

∑m
i=1 I`(v)=i ln(ψ(v; Θ)[i]);

11: . cross-entropy loss, Eq. (9)
12: return L(Ot; Θ).

B.2 Complexity Analysis
The training algorithm contains two stages, as discussed in
the main paper. In what follows, we analyze the complexity
of each stage.

First stage: offline construction of paths. This stage in-
volves the sampling of path segments and the construction
of paths, which only needs to be done once as precompu-
tation. In particular, during the computation of the support

or query loss, the paths gathered for RL and AL embedding
(lines 2–3 in Alg. 2) are precomputed in this stage. We ana-
lyze these two sub-parts separately.

1) Segment sampling: We first sample w paths with length
l for each node with complexity O(|V| ·w · l); for each sam-
pled path, we further apply a sliding window of size lp/2
to extract path segments up to length lp/2. Thus, the overall
complexity of segments sampling is O(|V| · w · l · lp).

2) Path construction: Given a pair of nodes, we join their
sampled segments that end with a common hub into full
paths up to length lp. As we store the end node of each seg-
ment as the key and the segment as the value, the retrieve of
the segments can be done in O(1) time. Thus, to construct
up to np paths between each pair of nodes, the complexity is
O(np), where np is set to a constant 10 in our experiments
(i.e., for each pair, we only consider at most np = 10 paths
between them).

Second stage: online model training. The main component
of training involves the calculation of the concatenated rep-
resentation in the classification layer, i.e., [hv‖eSt

v ‖eHv] in
Eq. (8). We analyze its complexity for a target node in an m-
way k-shot task. Given average node degree d and number
of aggregation layers nl in the graph encoder (i.e., GNN),
the embedding of the target node hv can be calculated in
O(dnl) time. Moreover, to calculate the RL and AL embed-
ding eSt

v and eHv , we need to first analyze the complexity
of the path encoder between the target node and a refer-
ence node. Given np paths each with a length up to lp, the
complexity of the path encoder is O(np · lp · dnl). Note that
there is a factor of dnl , since the path encoder requires the
output from the graph encoder for every node in the paths.
While RL embedding takes the set of support nodes St as
references, AL embedding takes the set of hubs H as ref-
erences. Thus, the complexity of RL and AL embedding is
O((|St|+|H|)·np ·lp ·dnl). More specifically, for RL embed-
ding |St| = mk in an m-way k-shot task, and for AL em-
bedding we only sample |H̃| hubs for efficiency, where |H̃|
is set to a constant 10 in our experiments. Thus, the overall
complexity of calculating the concatenated representation is
O((mk+ |H̃|) ·np · lp ·dnl). Note that for Meta-GNN (Zhou
et al. 2019), the complexity of computing the embedding for
a target node is O(dnl).

C Additional Experiments
We include additional experimental results on the further
analysis of hubs, as well as the training time.

C.1 Further Analysis of Hubs
As discussed in the main paper, hubs facilitate the sampling
of paths. To sample between a pair of nodes (u, v), without
hubs, the vast majority of random walks starting u will not
reach v, resulting in very low sampling efficiency. In this
experiment, we compare RALE with an alternative strategy
without using hubs. For RALE, we fix its random walk set-
ting as (50,10) (i.e., sample w = 50 random walks of length
l = 10 starting from each node). In the alternative strategy,
in order to obtain a reasonable number of samples with a
similar coverage ratio to RALE, more and longer random

(50,10)
(100,20)

(200,50)
(500,100)

(1000,200)

Random walk settings

20

40

60

80

100

C
ov

er
ag

e
ra

tio
 (%

)

50

60

70

80

A
cc

ur
ac

y
(%

)

Cov. w hubs, fixed to (50,10)
Cov. w/o hubs, varied based on x-axis
Acc. w hubs, fixed to (50,10)
Acc. w/o hubs, varied based on x-axis

(a) Coverage and accuracy.

(50,10)
(100,20)

(200,50)
(500,100)

(1000,200)

Random walk settings

103

104

105

Pr
ec

om
pu

ta
tio

n
tim

e
(s

)

Time w hubs, fixed to (50,10)
Time w/o hubs, varied based on x-axis

(b) Precomputation time.

Figure I: Analysis of random walk settings.

1-shot 3-shot 5-shot100

101

102

103

Tr
ai

n
tim

e/
ba

tc
h

(m
s)

(a) Amazon

1-shot 3-shot 5-shot100

101

102

103

(b) Email

1-shot 3-shot 5-shot100

101

102

103

(c) Reddit
GNN Meta-GNN RALE

Figure II: Comparison of training time per batch.

walks must be performed. We report the findings in Fig. I,
under the 1-shot setting on the Amazon dataset. In partic-
ular, we compare the paths coverage ratio and accuracy in
Fig. I(a) and the path precomputation time in Fig. I(b).

Several conclusions can be drawn. Firstly, using the same
random walk setting (50, 10) as RALE, without hubs the
coverage ratio and accuracy are significantly lower than
RALE. Secondly, we increase the random walk setting from
(50, 10) to (1000, 200) for the strategy without hubs, in order
to sample more paths. As expected, the coverage ratio and
accuracy both increase. While at (1000, 200) the strategy
without hubs can ultimately achieve comparable coverage
ratio with RALE at only (50, 10), its accuracy still falls short.
A potential reason is that, although they achieve similar cov-
erage ratio, hub-passing paths typically have elevated sig-
nificance due to the structural importance of hubs, and hubs
are also crucial to the graph-level AL embedding. Thirdly,
although without hubs we can eventually improve the cover-
age ratio, the corresponding precomputation time increases
drastically. At (1000, 200) the strategy without hubs incurs a
more than 10-fold increase in precomputation time, as com-
pared to RALE at (50, 10). Overall, the results demonstrate
the effectiveness and efficiency of using hubs.

C.2 Training Time Comparison
We compare the training time for a batch of tasks among
the bare GNN (i.e., without task adaptation), Meta-GNN and
RALE. As shown in Fig. II, we present the average training
time per batch.

We make the following observations. Firstly, GNN has the
lowest training cost, since it does not need any adaptation

on the support set in each task. With adaptation on the sup-
port set, Meta-GNN and RALE both cost more than GNN.
Secondly, RALE incurs more training time than Meta-GNN,
which is attributed to the path encoding for RL and AL em-
bedding. Thirdly, as the number of shots increases, the time
cost generally increases, especially for RALE since there are
more pairs of nodes for path encoding and path encoding
dominates the cost.

D Experimental Environment
We use Python-3.6.5 and Tensorflow-1.13.1 for implemen-
tation, and run all the experiments on a single workstation
with a Xeon W-2133 CPU, an RTX 2080Ti GPU and 128GB
memory.

