
On Size-Oriented Long-Tailed Graph Classification
of Graph Neural Networks

Zemin Liu
1∗
, Qiheng Mao

2,4∗
, Chenghao Liu

3‡
, Yuan Fang

1
, Jianling Sun

2,4‡
1
Singapore Management University;

2
Zhejiang University;

3
Salesforce Research Asia;

4
Alibaba-Zhejiang University Joint Institute of Frontier Technologies

{zmliu, yfang}@smu.edu.sg, {22021184, sunjl}@zju.edu.cn, chenghao.liu@salesforce.com

ABSTRACT
The prevalence of graph structures attracts a surge of investigation

on graph data, enabling several downstream tasks such as multi-

graph classification. However, in the multi-graph setting, graphs

usually follow a long-tailed distribution in terms of their sizes, i.e.,
the number of nodes. In particular, a large fraction of tail graphs

usually have small sizes. Though recent graph neural networks

(GNNs) can learn powerful graph-level representations, they treat

the graphs uniformly and marginalize the tail graphs which suffer

from the lack of distinguishable structures, resulting in inferior

performance on tail graphs. To alleviate this concern, in this paper

we propose a novel graph neural network named SOLT-GNN, to
close the representational gap between the head and tail graphs

from the perspective of knowledge transfer. In particular, SOLT-
GNN capitalizes on the co-occurrence substructures exploitation to

extract the transferable patterns from head graphs. Furthermore,

a novel relevance prediction function is proposed to memorize the

pattern relevance derived from head graphs, in order to predict

the complements for tail graphs to attain more comprehensive

structures for enrichment. We conduct extensive experiments on

five benchmark datasets, and demonstrate that our proposed model

can outperform the state-of-the-art baselines.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; • Information systems→ Data mining.

KEYWORDS
Size-oriented long-tailed distribution, graph neural networks, knowl-

edge transfer

ACM Reference Format:
Zemin Liu

1∗
, Qiheng Mao

2,4∗
, Chenghao Liu

3‡
, Yuan Fang

1
, Jianling Sun

2,4‡
.

2022. On Size-Oriented Long-Tailed Graph Classification of Graph Neural

Networks. In Proceedings of the ACMWeb Conference 2022 (WWW ’22), April
25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3485447.3512197

∗
Co-first authors with equal contribution.

‡
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3512197

1 200 400 600 800 1000
Graph rank by size

0

50

100

150

200

G
ra

ph
 si

ze

IMDB-binary
FRANKENSTEIN

(a) Long-tailed graph distribution (b) Graph classification performance

Figure 1: Illustration of long-tailed distribution.

1 INTRODUCTION
Graph structures, as a typical form of Web data, have attracted a

surge of investigation due to their prevalence in society. In par-

ticular, analysis on graphs benefits a wide range of tasks on the

Web, such as search, recommendation, Web evolution, etc. Conse-
quently, many efforts have been devoted to the community of graph

analysis. In particular, graph representation learning [3] arises as

an effective tool to map nodes into low-dimensional vectors by

preserving the graph structures, opening a great opportunity for

graph analysis. Recently, more attention has been shifted to graph

neural networks (GNNs) [45], which capitalize on the key operation

of neighborhood aggregation to recursively aggregate messages

from neighboring nodes to form the node representations, thus pre-

serving both the structure and content information simultaneously.

These prior attempts accordingly lay the foundation for graph-level

representation learning [46, 50], which essentially summarizes the

underlying patterns of the entire graph, enabling several down-

stream tasks such as multi-graph classification [26, 51].

Problem. In the setting of multi-graph classification, the number

of nodes in each graph, i.e., the graph size, usually follows a long-

tailed distribution across graphs. For example, as shown in Fig. 1(a),

the graph sizes in two benchmark datasets (refer to Appendix B for

more details) exhibit the power-law characteristic. In particular, a

few head graphs occupy a handful of the largest graph sizes, while a

significant fraction of tail graphs usually have small sizes. However,

GNNs for graph-level representation learning depend heavily on

the abundance of structural information in a graph. As shown in

Fig. 1(b), applyingGIN [46] for graph classification, the graphs with

larger size usually achieve higher accuracy, while the performance

gradually drops as the graph size decreases.While GNNs are capable

of drawing expressive and discriminative representations of the

head graphs hinging on their sufficient structures, they usually treat

the graphs uniformly and marginalize the tail graphs which suffer

from the lack of distinguishable structures. Unsurprisingly, this

https://doi.org/10.1145/3485447.3512197
https://doi.org/10.1145/3485447.3512197

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Zemin Liu, Qiheng Mao, Chenghao Liu, Yuan Fang, Jianling Sun

?
complement

Head graph
Tail graph

Node-level

Subgraph-level

Sa
m

pl
in

g

…

Predict

Adapt

Adapt

Predict Predict

(a) Co-occurrence
substructures

(b) Relevance prediction
function

…

Query

Query
Query

Figure 2: Knowledge transfer from head to tail graphs.

long-tailed distribution gives rise to the performance differentiation

between head and tail graphs. The inferior performance of tail

graphs further limits the overall performance. To bridge this gap,

in this paper, we investigate the significant yet unexplored problem

of size-oriented long-tailed graph classification, by particularly

improving the performance of tail graphs.

Prior work. Recent studies [8, 32, 46, 50] on graph-level repre-

sentation learning generally concentrate on improving the GNN

architectures to yield more expressive representations. Despite the

effectiveness, they usually treat all graphs uniformly and neglect

to particularly improve the tail graphs which suffer from scarce

structures. Several recent studies investigate the node-level long-

tailed distribution phenomenon on graphs, such as the long-tailed

node degrees [24, 25] and node classes [37, 52]. However, these are

distinct problems and their approaches cannot be directly applied

to the multi-graph setting. Several related studies investigate the

effect of graph size on graph learning, such as difficulty estimation

by graph size for curriculum learning [43], embedding dimension

modulation w.r.t. graph size for representation learning [18], and

model generalization from small to large graphs [48]. However,

none of them is particularly designed to improve the performance

of tail graphs, an especially challenging group due to the structural

limitation.

Challenges and present work. Compared to the head, tail graphs

usually lack inner structures due to their small sizes, which further

restrict the expressiveness of their learnt representations. To pro-

mote the representational capacity of GNNs especially toward tail

graphs, a possible solution is through the lens of knowledge transfer

[19, 24, 49] from head to tail graphs to enrich the latter, by deriving

more comprehensive graph structures on tail graphs for a better

representation. However, this non-trivial solution presents us with

two main challenges. First, how to identify and exploit the transfer-
able patterns on head graphs for tail graph enrichment? Second, how
to transfer the necessary patterns for tail graphs in consideration of
their individuality?

To address these challenges, in this paper we propose a novel

graph neural network named SOLT-GNN, toward Size-Oriented

Long-Tailed graph representation learning especially for the pro-

motion of tail graphs, in order to narrow the gap between head and

tail graphs. In particular, SOLT-GNN tries to exploit the transfer-

able patterns on the structure-abundant head graphs for the sake of

enriching the structure-scarce tail graphs for more expressive graph

representations, which can further boost the overall performance.

Generally, patterns on graphs can be associated together to form

some higher-level groups. For example, on a protein network, the

combination of an amidogen and a carboxyl can form some kind

of amino acid. This association intrinsically reflects the relevance

proximity between the graph patterns, which motivates us to re-

sort to the co-occurrence of substructures for transferable patterns
exploitation. Therefore, to deal with the first challenge, we distill

the pattern relevance by exploiting the substructure co-occurrence

on the structure-abundant head graphs, especially from two per-

spectives, i.e., node- and subgraph-levels, as shown in Fig. 2(a). On

the one hand, nodes are atomic elements on graph, and their rep-

resentations fundamentally reflect the miniature of local patterns.

Therefore, the co-occurrence of nodes on a graph (e.g., 𝑣1 and 𝑣4

in Fig. 2(a)) essentially reveals the relevance between the fine local

patterns. On the other hand, a sampled subgraph intrinsically pre-

serves the partial structure information of the entire graph, which

can be complemented by the rest of the graph to form a holis-

tic overview of the whole graph. In light of this, we further rely

on the co-occurrence of subgraphs to derive the complementary

characteristic for pattern relevance exploitation.

To address the second challenge, as shown in Fig. 2(b), we devise a

novel relevance prediction function to preserve the pattern relevance

exploited on head graphs, and further predict the relevant patterns

to enrich the tail graphs. In particular, the relevance prediction func-

tion capitalizes on a pattern memory M to memorize the underlying

patterns across the graphs, which are distilled from the mined co-

occurrence substructures shown in Fig. 2(a). More precisely, given

the sampled co-occurrence substructures, the relevance prediction

function is capable of learning to predict the relevant patterns for

a given query by adapting the shared pattern memory toward the

query, which can be further utilized to predict the relevant patterns

as the complement to a given tail graph. As a result, the relevance

prediction function can bridge the structure-abundant head and

structure-scarce tail graphs for knowledge transfer, to subsequently

boost the representational expressiveness of the latter.

Contributions. To the best of our knowledge, this is the first GNN
model to investigate the problem of size-oriented long-tailed graph

classification. In summary, our contributions are three-fold. (1) We

identify the size-oriented long-tailed phenomenon and its impact

on the graph classification performance, and investigate the prob-

lem through the lens of knowledge transfer. (2) We propose a novel

graph neural network SOLT-GNN to close the gap between head

and tail graphs for long-tailed graph classification. (3) Extensive

experiments on five benchmark datasets demonstrate that our pro-

posed model can outperform the state-of-the-art baselines.

2 RELATEDWORK

Graph representation learning. The development of graph em-

bedding approaches [11, 30, 38] opens great opportunities for graph

analysis, which aim to map nodes or substructures into a low-

dimensional space in which the connecting structures on the graph

can be preserved. Recently, graph neural networks (GNNs) [13, 15,

21, 23, 41, 46] emerge as the state-of-the-art approaches for graph

On Size-Oriented Long-Tailed Graph Classification
of Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

representation learning, which usually capitalize on the key opera-

tion of neighborhood aggregation to recursively pass and receive

messages from the neighbors for node representation learning, thus

both the structure and content information can be preserved.

In addition, graph-level representation learning [17, 26, 46, 50,

51] focuses on the overall graph structure, thus they usually require

an extra step—summarizing the local structure representations to

generate the graph-level representation. Early studies usually resort

to graph kernel methods [16, 35, 42, 47], but the heuristic charac-

teristic and computational expense hinder their development on

more complex networks. Recently, GNN-based graph pooling ap-

proaches [27] boost the investigation of graph-level representation,

which can be further categorized into two aspects, i.e., global pool-
ing and hierarchical pooling. Global pooling [8, 10, 46, 51] is also

known as the READOUT function, which utilizes a pooling layer

to summarize all the node representations by connected layer [10],

direct pooling [46], sorted pooling [51] or more [1, 8]. Hierarchical

pooling [9, 17, 26, 32, 50] approaches try to gradually group nodes

into clusters and coarsen the graph recursively, thus an overview of

the whole graph structure can be obtained at last. However, these

graph-level representation approaches are generally designed for

improving the overall graph representations, yet still marginalizing

the structure-scarce tail graphs.

Long-tailed problems on graph. Recently, increasing attention
from diverse research areas has been paid to the problem of long-

tailed distribution, such as recommendation [5, 20, 34, 49] and im-

balanced classification [14, 19, 39] in computer vision. Furthermore,

several recent studies have been devoted to address the long-tailed

problems on graph. Approaches meta-tail2vec [25] and Tail-GNN
[24] concentrate on the long-tailed distribution of node degrees.

In addition, several studies [6, 22, 31, 37, 52, 53] are proposed to

address the imbalanced class issue toward node classification. How-

ever, these approaches mainly address the long-tailed distribution

issue lying in the node-level, which is distinct from our size-oriented

long-tailed graph classification.

Investigation on graph size effect. A few recent studies consider

the graph size effect on graph neural networks. CurGraph [43] tries

to investigate the curriculum learning on graph neural networks,

by regarding the graph size as a heuristic metric to evaluate the

difficulty of diverse graphs.MxGNN [18] considers the relationship

between graph size and the dimension size of GNN embeddings, by

grouping graphs into several groups w.r.t. their sizes. Another graph

size related problem is size generalization [48] on GNNs, which aims

to train GNNs on small graphs and generalize the obtained GNN

models onto large graphs for generalization ability investigation.

While they distinguish graphs based on their sizes, they are not

particularly devised to enhance the representational capacity of

GNNs toward structure-scarce tail graphs.

3 PRELIMINARIES
3.1 Problem Formulation

Graph. A graph is denoted by 𝐺 = {𝑉 , 𝐸,X}, where 𝑉 is the set of

nodes, 𝐸 is the set of edges, X ∈ R |𝑉 |×𝑑𝑋 is the node feature matrix

with x𝑣 ∈ R𝑑𝑋 denoting the feature vector of node 𝑣 ∈ 𝑉 .

The problem. For multi-graph classification, given a set of graphs

G = {𝐺1,𝐺2, . . . ,𝐺𝑁 } associated with the corresponding graph

labels 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑁 }, where 𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 ,X𝑖 } is a graph with

𝑖 ∈ {1, 2, . . . , 𝑁 }, graph-level representation learning aims to learn

a mapping function 𝑓 : G → R𝑑 to map each graph 𝐺𝑖 ∈ G into a

low-dimensional vector h𝐺𝑖
∈ R𝑑 , thus a classifier ℓ : G → 𝑌 can

be employed to classify graph 𝐺𝑖 ∈ G into its corresponding group

ℓ (𝐺𝑖) = 𝑦𝑖 ∈ 𝑌 based on the representation h𝐺𝑖
.

In the multi-graph setting, the graph size, i.e., the number of

nodes |𝑉𝑖 | in each graph 𝐺𝑖 , usually follows a long-tailed distribu-

tion. For ease of discussion, we rank all graphs by their sizes in a

descent order, i.e., |𝑉1 | ⩾ |𝑉2 | ⩾ . . . ⩾ |𝑉𝑁 |. In particular, the first𝐾
graphs are called head graphs, i.e., G

head
= {𝐺1,𝐺2, . . . ,𝐺𝐾 } ⊂ G;

while the rest graphs with small sizes are called tail graphs, i.e.,
G
tail

= {𝐺𝐾+1,𝐺𝐾+2, . . . ,𝐺𝑁 } ⊂ G. It is obvious that G = G
head
∪

G
tail

and G
head
∩G

tail
= ∅. Note that,𝐾 can be predetermined based

on the specificality of each dataset. Let 𝑘 denote the smallest size of

head graphs, i.e., 𝑘 = |𝑉𝐾 |. Given the above setup, we aim to learn a

powerful GNN which can achieve satisfactory graph classification

performance for both head and tail graphs, especially the latter.

3.2 Graph Neural Networks
Graph neural networks (GNNs) [45] typically depend on the key

operation of layer-wise neighborhood aggregation to recursively

pass and transform messages from the neighboring nodes to form

the representation of the target node. Formally, let 𝜙𝑔 (·;𝜃𝑔) de-
note a GNN architecture parameterized by 𝜃𝑔 . In the 𝑙-th layer, the

representation of node 𝑣 , i.e., h𝑙𝑣 ∈ R𝑑𝑙 , can be calculated by

h𝑙𝑣 = Aggr(h𝑙−1

𝑣 , {h𝑙−1

𝑖 : 𝑖 ∈ N𝑣};𝜃𝑙𝑔), (1)

where N𝑣 is the neighbors set of node 𝑣 , and Aggr(·;𝜃𝑙𝑔) is the
neighborhood aggregation function parameterized by 𝜃𝑙𝑔 in layer

𝑙 . Given a total of 𝐿 layers, 𝜃𝑔 = {𝜃1

𝑔 , 𝜃
2

𝑔 , . . . , 𝜃
𝐿
𝑔 } denotes all the

parameters set in the GNN model. Note that, in the first layer, the

node feature vector x𝑣 is utilized as the initial representation h0

𝑣 ,

i.e., h0

𝑣 = x𝑣 . For simplicity, we directly use h𝑣 ∈ R𝑑𝐿 to denote

the output representation of node 𝑣 . In addition, different GNN

architectures may differ in the neighborhood aggregation function,

e.g., mean-pooling aggregation in GCN [15], attention-based ag-

gregation in GAT [41]. In particular, our SOLT-GNN is agnostic

to the base GNN models, and we aim to make it flexible to most

neighborhood aggregation based GNNs.

Given the node representations on a graph 𝐺𝑖 , an additional

summarizing function, i.e., the READOUT function, can be uti-

lized to aggregate the node representations to form the graph-level

representation h𝐺𝑖
∈ R𝑑 as follows,

h𝐺𝑖
= READOUT({h𝑣 : 𝑣 ∈ 𝑉𝑖 }), (2)

where READOUT(·) is a READOUT function, which is usually

permutation invariant [50, 51]. We simply apply SUM-pooling in

our implementation (thus here dimension 𝑑 = 𝑑𝐿), although more

advanced alternatives can also be utilized [46, 50].

4 THE PROPOSED MODEL: SOLT-GNN
In this section, we present the concrete description of SOLT-GNN
for size-oriented long-tailed graph classification through the lens of

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Zemin Liu, Qiheng Mao, Chenghao Liu, Yuan Fang, Jianling Sun

(a) Toy networks

Head graph Tail graph ……

N
od

e-
le

ve
l

tri
pl

es

……
Su

bg
ra

ph
-le

ve
l

tri
pl

es

Task loss (Eq.(11))
-

(b) Co-occurrence substructures exploitation (c) Pattern relevance prediction

Graph encoder

Prediction for
query

substructures

Prediction for
graphs

Graph
complement

Pattern relevance loss
Eqs.(4) and (5)

-

Query Positive Negative

Complement
dissimilarity constraint

-

(d) Overall objective

Relevance prediction function

O
verallobjective

Figure 3: Overall framework of SOLT-GNN. Note that, substructures 𝑠3 and 𝑠6 in (b) are sampled from another random graph to
serve as the negative instances.

knowledge transfer from head to tail graphs, especially to promote

the performance of the latter. We illustrate the overall framework

of SOLT-GNN in Fig. 3. Given a set of graphs including the head

and tail, we first exploit the co-occurrence substructures on head

graphs in Fig. 3(b) from two aspects, i.e., node- and subgraph-levels
(Sect. 4.1). Afterwards, in Fig. 3(c) we rely on a relevance prediction

function to extract the pattern relevance hinging on the mined

co-occurrence substructures, and predict the relevant patterns for

graphs to serve as the graph complement (Sect. 4.2). Finally, in

Fig. 3(d), the complemented graph representations are utilized to

form the graph classification loss, by incorporating several auxil-

iary constraints to enhance the model training (Sect. 4.3). In the

following part, we will elaborate the details of each part.

Relevance prediction function. The GNN architectures can draw

expressive representations from head graphs by virtue of their abun-

dant structures. On the contrary, the lack of structural information

on tail graphs limits their representational capacity, exposing a bot-

tleneck of ordinary GNNs on representation learning for tail graphs.

To address this issue, we resort to knowledge transfer from head to

tail graphs to enrich the latter for more comprehensive graph rep-

resentations. In particular, the abundant structures on head graphs,

open an opportunity for us to exploit the transferable patterns.

As discussed in Sect. 1, the graph patterns usually associate with

each other to form more advanced structural groups. In addition,

patterns usually manifest as substructures on a graph, such as the

amidogen on a protein network. In light of this, we exploit the co-

occurrence of substructures, which instantiate the abstract patterns,

to derive the relevance between patterns, thus proper structural

information can be further predicted on tail graphs to complement

their scarce structures.

In fulfillment of relevance distillation, we are required to seek

a relevance prediction function 𝜙𝑟 (·;𝜃𝑟) parameterized by 𝜃𝑟 , to

predict the relevant pattern for a query 𝑞 as follows,

r𝑞 = 𝜙𝑟 (h𝑞 ;𝜃𝑟), (3)

where h𝑞 ∈ R𝑑 is the representation of query 𝑞, and r𝑞 ∈ R𝑑 is the

predicted relevant pattern representation of 𝑞.

In particular, relevance prediction function provides us with the

ability of preserving the relevance between patterns from head

graphs, thus it further enables the relevant pattern prediction for

the structure-scarce tail graphs. Therefore, it can bridge the head

and tail graphs for knowledge transfer. Next, we will illustrate the

co-occurrence substructures exploitation on head graphs, which

lay the foundation for pattern relevance distillation.

4.1 Co-occurrence Substructures Exploitation
In essence, pattern is an abstract concept and can be arbitrary struc-

tures on graphs. To capture the relevance from different perspec-

tives, we embody the patterns into two levels of substructures, i.e.,
node- and subgraph-levels, as illustrated before. The co-occurrence

of nodes on a graph essentially reveals the relevance between fine

local structures, while the co-occurrence of subgraphs reflects the

relevance between partial graph-level representation and its com-

plementary representation. On account of this, the dual-level ex-

ploitation enables us to discern relevance for both the fine- and

coarse-grained structures, respectively.

Node-level co-occurrence. Intrinsically, the co-occurrence of

nodes on a graph reflects the relevance between their contex-

tual structures they reside in, while the relevance would not re-

main for nodes distributing on different graphs. This motivates

us to compose the positive and negative pairs for the training of

𝜙𝑟 (·;𝜃𝑟) in a contrastive manner. Formally, given a head graph

𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 ,X𝑖 } ∈ Ghead, we randomly sample two nodes 𝑣,𝑢 ∈ 𝑉𝑖
to form the positive pair. Meanwhile, we further sample a node 𝑢 ′

from another random graph 𝐺 𝑗 ∈ Ghead as a negative node. Thus,
we can instantiate a triplet (𝑞, 𝑎, 𝑏) as (𝑣,𝑢,𝑢 ′), in which (𝑞, 𝑎) is a
positive pair and (𝑞,𝑏) is a negative pair. For example, as shown in

Fig. 3(b), substructures 𝑠1, 𝑠2 and 𝑠3 (i.e., nodes 𝑣1, 𝑣4 and 𝑣12) form

a node-level triplet. Finally, we assemble all the node-level triplets

to form set T
node

.

Subgraph-level co-occurrence. For subgraph-level co-occurrence,
given a head graph 𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 ,X𝑖 } ∈ Ghead as well as a prede-

fined size 𝑡 (usually smaller than 𝑘), we start from a random node

𝑣 ∈ 𝑉𝑖 to conduct a BFS (Breadth First Search) based sampling to

derive a connected subgraph 𝐺sub

𝑖
= {𝑉 sub

𝑖
, 𝐸sub
𝑖
,Xsub

𝑖
} with size

|𝑉 sub

𝑖
| = 𝑡 , to serve as the query. Subsequently, we regard the re-

maining structure on graph 𝐺𝑖 , i.e., 𝐺rem

𝑖
= {𝑉 rem

𝑖
, 𝐸rem
𝑖

,Xrem

𝑖
} by

subtracting𝐺sub

𝑖
from𝐺𝑖 , as the positive sample of𝐺sub

𝑖
. Note that,

the combination of these two substructures can form a holistic

On Size-Oriented Long-Tailed Graph Classification
of Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

structure, i.e., the graph 𝐺𝑖 . Furthermore, given another random

head graph𝐺 𝑗 , we randomly sample a set of nodes to form subgraph

𝐺
neg

𝑗
which has the same size with 𝐺rem

𝑖
and can be unconnected,

to serve as the negative instance. Finally, a subgraph-level triplet

(𝑞, 𝑎, 𝑏) can be instantiated as (𝐺sub

𝑖
,𝐺rem

𝑖
,𝐺

neg

𝑗
). For example, as

shown in Fig. 3(b), substructures 𝑠4, 𝑠5 and 𝑠6 form a subgraph-level

triplet. We assemble all the subgraph-level triplets into set T
subg

.

In particular, due to the limited structural information, subgraph

𝐺sub

𝑖
can be regarded as a fake structure-scarce tail graph, which

requires a complement to form a holistic structure.

Note that, we can conduct the co-occurrence exploitation offline

to save time. The exploited triplets can reflect the pattern rele-

vance from two views, i.e., node- and subgraph-levels, which will

be employed to train the relevance prediction function 𝜙𝑟 (·;𝜃𝑟).

Pattern relevance loss.We rely on the dual-level co-occurrence

triplets to guide the training of relevance prediction function𝜙𝑟 (·;𝜃𝑟).
In particular, given a triplet (𝑞, 𝑎, 𝑏) associated with the correspond-

ing representation triplet (h𝑞, h𝑎, h𝑏), we predict 𝑞’s relevant pat-
tern representation r𝑞 by Eq. (3), and drive r𝑞 close to the positive

instance h𝑎 , while away from negative instance h𝑏 . Note that, to
calculate the representations for the subgraphs existing in subgraph-

level triplets, we directly modify the READOUT function in Eq. (2)

to merely aggregate the node representations within each subgraph.

We resolve the pattern relevance objective into two parts, for node-

and subgraph-levels, respectively, as theymay contribute differently

to the optimization of relevance prediction function, as follows.

Lnode

rel
= −∑(𝑞,𝑎,𝑏) ∈Tnode ln𝜎 (sim(r𝑞, h𝑎) − sim(r𝑞, h𝑏)), (4)

Lsubg

rel
= −∑(𝑞,𝑎,𝑏) ∈Tsubg ln𝜎 (sim(r𝑞, h𝑎) − sim(r𝑞, h𝑏)). (5)

Here sim(·, ·) is a similarity function, and we employ cosine simi-

larity in our implementation; and 𝜎 (𝑥) = 1/(1+𝑒−𝑥) is the sigmoid

function.

By the optimization w.r.t. the dual-level co-occurrence triplets,

relevance prediction function 𝜙𝑟 (·;𝜃𝑟) can be driven to learn how

to predict the relevant pattern representation for a query. We will

elaborate the details of this function in Sect. 4.2.

4.2 Realizing Pattern Relevance Prediction
The dual-level co-occurrence triplets exploited on head graphs

empower the optimization of relevance prediction function𝜙𝑟 (·;𝜃𝑟).
In this section, we concretely illustrate this function.

Relevance prediction function.Generally, in a particular domain,

typical patterns are commonly shared across graphs. For example,

patterns such as hydroxy groups and amidogens are usually shared

across protein networks. On the other hand, each graph usually pos-

sesses particular patterns forming its individual frame. For example,

a protein molecule may have a hydroxy group, while another may

has a phenyl group forming its own holistic function.

To memorize the typical patterns across graphs while holding

the capacity to adapt to each specific query for prediction, we devise

a novel module named pattern memory for pattern memorization.

In particular, pattern memory M ∈ R𝑑𝑚×𝑑𝑚 is a globally shared

learnable parameter matrix to record the typical patterns across

graphs. Meanwhile, it can also be adapted to each query 𝑞 (e.g., a
tail graph) w.r.t. its representation h𝑞 to predict its relevant pattern

representation. Again, we aim to extract the abstract patterns based

on the co-occurrence triples T
node

and T
subg

exploited from head

graphs and preserve them into the pattern memory, so that it can be

further utilized to predict the relevant patterns for a query (e.g., a tail
graph) to serve as its structural complement. Thus, the structural

knowledge can be transferred from head to tail graphs.

Formally, given the representation of a query 𝑞, i.e., h𝑞 ∈ R𝑑 ,
we consider the scaling and shifting transformation [21, 29] to

modulate the pattern memory M w.r.t. h𝑞 into an adapted version,

M𝑞 = (A𝑞 + 1) ⊙M + B𝑞, (6)

where M𝑞 ∈ R𝑑𝑚×𝑑𝑚 is the adapted pattern memory w.r.t. query 𝑞,

⊙ denotes element-wise product, variables A𝑞 and B𝑞 ∈ R𝑑𝑚×𝑑𝑚
are modulating factors to scale and shift pattern memoryM w.r.t.

the query 𝑞, and 1 is a vector filled with ones to ensure the scaling

factor surrounding around ones. Note that, here 𝑞 can be a node

in Eq. (4), a subgraph in Eq. (5), or a graph which needs structural

complement. In addition, A𝑞 and B𝑞 are not learnable parameter

matrices, but are generated by a secondary neural network [12] as,

A𝑞 = LeakyReLU(w𝐴h⊤𝑞 U𝐴), (7)

B𝑞 = LeakyReLU(w𝐵h⊤𝑞 U𝐵), (8)

where w𝐴 and w𝐵 ∈ R𝑑𝑚 are learnable parameter vectors, and U𝐴
and U𝐵 ∈ R𝑑×𝑑𝑚 are learnable parameter matrices.

The relevant pattern representation of query 𝑞, i.e., r𝑞 , can be

further distilled from the modulated pattern memoryM𝑞 as

r𝑞 = 𝜙𝑟 (h𝑞 ;𝜃𝑟) = (LeakyReLU(M𝑞W𝑟))⊤w𝑟 , (9)

where w𝑟 ∈ R𝑑𝑚 and W𝑟 ∈ R𝑑𝑚×𝑑 are learnable parameter vector

and matrix, respectively. Here, 𝜃𝑟 = {M,W𝑟 ,U𝐴,U𝐵,w𝐴,w𝐵,w𝑟 }
is the parameters set in the relevance prediction function.

Given a query𝑞, relevance prediction function𝜙𝑟 (·;𝜃𝑟) is capable
of inferring the relevant pattern representation for 𝑞. Consequently,

given a tail graph 𝐺𝑖 ∈ Gtail associated with the representation

h𝐺𝑖
, we can capitalize on this function to infer its relevant pattern

representation by r𝐺𝑖
= 𝜙𝑟 (h𝐺𝑖

;𝜃𝑟). In particular, as r𝐺𝑖
reflects

the relevant patterns which may co-occur with the query tail graph

𝐺𝑖 with high probability, it can act as the complement to enrich the

structure-scarce tail graph 𝐺𝑖 for a more comprehensive structure.

Enriched graph representation. For each graph 𝐺𝑖 , we enrich

its original graph-level representation h𝐺𝑖
by incorporating the

predicted relevant pattern representation r𝐺𝑖
(i.e., the complement)

generated by relevance prediction function 𝜙𝑟 (·;𝜃𝑟) as follows,
˜h𝐺𝑖

= h𝐺𝑖
+ 𝜙𝑟 (h𝐺𝑖

;𝜃𝑟) = h𝐺𝑖
+ r𝐺𝑖

. (10)

We directly utilize an add operation to combine the two represen-

tations, while it is also possible to employ more advanced neural

networks to make it learnable. The enriched graph representation

˜h𝐺𝑖
can be further employed for graph classification.

4.3 Training Constraints and Objective
While the graph representations can be fed into the task loss for end-

to-end learning, we also incorporate several auxiliary constraints

into the overall objective to facilitate the model training.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Zemin Liu, Qiheng Mao, Chenghao Liu, Yuan Fang, Jianling Sun

Task loss. The enriched graph representations can be employed

to minimize the graph classification loss. In particular, as our goal

is to improve the graph classification especially for the tail graphs,

we resolve the task loss into two parts, i.e., task loss for head and

tail graphs, since they may contribute differently to the model opti-

mization for promoting the performance of tail graphs. Formally,

given a set of training graphs Gtr associated with the graph labels

𝑌tr, the task loss L
task

can be formulated as

L
task

= 𝛼 ·∑𝐺𝑖 ∈Gtr∩Ghead CrossEnt(˜h𝐺𝑖
, y𝑖)

+ (1 − 𝛼) ·∑𝐺𝑖 ∈Gtr∩Gtail CrossEnt(˜h𝐺𝑖
, y𝑖), (11)

where y𝑖 is the one-hot encoding of the corresponding label 𝑦𝑖 ∈
𝑌tr, CrossEnt(·, ·) is the cross-entropy function, and 𝛼 is a hyper-

parameter to modulate the weight of loss on head and tail graphs.

Note that, in Eq. (11) we incorporate the inferred complement for

both head and tail graphs for model training, and this would drive

the model to learn more expressive representations for tail graphs

which need the complement. For inference on testing set, we only

incorporate the predicted complement for tail graphs to form their

final representations; while for head graphs, we directly resort to

the representations calculated by the base GNN model for usage,

since their abundant structures are already representative enough.

Constraint for dissimilarity of inferred complement. Given a

query graph𝐺𝑖 , the relevance prediction function𝜙𝑟 (·;𝜃𝑟) can infer
the relevant patterns which may co-occur with the structures on

𝐺𝑖 with a high probability. In particular, the predicted complement

should represent the highly relevant patterns which may co-occur

with𝐺𝑖 , but not those similar to𝐺𝑖 . Thus, to stress more on the rele-

vance yet less on similarity between them, we import an additional

constraint to make them dissimilar, as follows.

L
dis

=
∑
𝐺𝑖 ∈Gtr sim(h𝐺𝑖

, r𝐺𝑖
) . (12)

Overall objective. By incorporating all the loss functions and

constraints, we formulate the overall objective as follows,

L = L
task
+ 𝜆 · L

dis
+ 𝜇1 · Lnode

rel
+ 𝜇2 · Lsubg

rel
+ Ω(Θ), (13)

whereΘ = 𝜃𝑔∪𝜃𝑟 is the parameters set, Ω(·) is the 𝐿2 regularization

function, and 𝜆, 𝜇1 and 𝜇2 are hyperparameters to modulate the

weight of each part. We further present the algorithm for model

training as well as the complexity analysis in Appendix A.

5 EXPERIMENTS
In this section, we conduct extensive experiments on tail graph

classification to evaluate the performance of the proposed SOLT-
GNN, and further give detailed model analysis from several aspects.

5.1 Experimental Setups

Datasets. We employ a total of five benchmark datasets, including

four bioinformatics datasets and one social network dataset. The

bioinformatics datasets include PTC [40], PROTEINS [2], D&D [7]

and FRANKENSTEIN [28], while the social network dataset includes

IMDB-binary [47]. The statistic of the datasets is summarized in

Table 1. We provide further details for these datasets in Appendix B.

Table 1: Summary of datasets.

Graphs Avg.(nodes) Avg.(edges) # Classes # Features 𝐾

PTC 344 25.5 25.96 2 19 72

PROTEINS 1,113 39.06 72.82 2 3 251

D&D 1,178 284.32 715.66 2 82 228

FRANKENSTEIN 4,337 16.90 17.88 2 4 922

IMDB-binary 1,000 19.77 96.53 2 65 205

Base GNN models. Our SOLT-GNN is agnostic of the base GNN

models and can flexibly work with most of the neighborhood aggre-

gation based GNN architectures for graph representation learning.

By default, we employ GIN [46] as the base GNN model in our

experiments due to its effectiveness, thus forming the variant of

SOLT-GIN. To evaluate the flexibility of SOLT-GNN with different

GNNs, we further employ another two popular GNNs as the base

models, i.e., GCN [15] and GraphSAGE [13], thus forming another

two variants, SOLT-GCN and SOLT-SAGE, respectively. Further
details and settings for base GNN models are in Appendix C.

Baselines. To comprehensively evaluate the proposed SOLT-GNN
against the state-of-the-art approaches, we consider a series of base-

lines from three main categories, graph kernel based approaches,
graph neural neworks and graph pooling approaches. (1) Graph kernel
approaches: GK (Graphlet Kernel) [36] and WL (Weisfeiler-Lehman

subtree kernel) [35]. They are classical graph representation learn-

ing methods that generating graph representations directly by ex-

ploiting graph substructures with handcrafted kernel functions.

(2) Graph neural networks: Mixup [44] and CurGraph [43]. They

follow the architecture of layer-wise neighborhood aggregation to

achieve expressive node representations and use the READOUT

function to summarize the node representations to generate graph

representations. In particular, they capitalize on advanced train-

ing techniques over the basic GNNs to improve the performance,

i.e., Mixup and curriculum learning, respectively. (3) Graph pooling
approaches: SortPool [51], DiffPool [50] and MxGNN [18]. They

develop diverse graph pooling mechanisms to generate more ex-

pressive graph representations in order to achieve promotion for

graph classification. More details of the baselines are in Appendix D.

Settings and parameters. For each dataset, we divide graphs into

head and tail with predefined 𝐾 . In particular, for each dataset, 𝐾

is determined based on the Pareto principle (also known as 20/80

rule) [33] to employ the 20% largest graphs as head graphs, and the

rest 80% as tail graphs. Therefore, 𝐾 is different across datasets, as

shown in Table 1. Note that, 𝐾 is an important hyper-parameter

to decide the partition of knowledge transfer source (i.e., head
graphs) and target (i.e., tail graphs). We also conduct experiments

with different 𝐾 ’s in Sect. 5.3, and conclude that our model can

persistently empower the knowledge transfer to enhance the tail

graph classification performance. We adopt accuracy as the metric

to evaluate the performance, which is widely employed in the task

of graph classification [46, 50, 51]. For each dataset, we randomly

split the graphs with proportion of 7:1:2 as training, validation and

testing set respectively, thus the graphs in all sets follow the long-

tailed distribution. All experiments are repeated for five times, and

we report the averaged results with standard deviations. Note that,

in evaluation, wemainly focus on the performance promotion of tail

On Size-Oriented Long-Tailed Graph Classification
of Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 2: Long-tailed graph classification using GIN as the base model.
Henceforth, tabular results are in percent; the best result is bolded and the runner-up is underlined.

Methods

PTC PROTEINS D&D FRANKENSTEIN IMDB-binary

Test Tail Test Tail Test Tail Test Tail Test Tail

GK 52.3 ± 2.5 50.6 ± 3.6 68.9 ± 1.9 66.4 ± 1.8 75.1 ± 2.4 72.0 ± 2.8 63.1 ± 1.3 62.3 ± 1.5 52.7 ± 3.3 57.0 ± 3.2

WL 57.8 ± 4.8 54.8 ± 2.7 74.0 ± 3.6 71.1 ± 4.4 78.2 ± 1.2 76.0 ± 1.5 72.4 ± 1.2 72.1 ± 1.3 71.4 ± 2.6 68.4 ± 2.9

GIN 56.2 ± 6.1 54.3 ± 5.5 74.9 ± 1.1 73.1 ± 2.2 76.3 ± 3.4 72.7 ± 4.2 72.4 ± 1.4 72.4 ± 1.2 76.9 ± 1.1 73.6 ± 1.2

CurGraph 54.1 ± 4.6 58.8 ± 5.8 74.3 ± 1.6 74.5 ± 0.7 69.6 ± 2.2 68.1 ± 2.8 71.3 ± 1.4 70.8 ± 1.2 73.5 ± 1.7 70.5 ± 1.5

Mixup 58.8 ± 4.3 56.3 ± 4.9 72.9 ± 0.6 71.5 ± 1.6 73.6 ± 3.4 72.1 ± 4.4 70.2 ± 0.7 70.1 ± 0.9 76.5 ± 2.5 72.9 ± 2.4

SortPool 58.8 ± 2.1 59.1 ± 2.7 72.0 ± 1.2 70.4 ± 1.9 74.4 ± 2.0 74.7 ± 4.0 71.3 ± 1.4 70.2 ± 1.2 68.4 ± 5.4 66.2 ± 4.2

DiffPool 58.8 ± 4.4 58.4 ± 4.3 72.0 ± 1.0 69.4 ± 2.0 74.3 ± 1.1 72.2 ± 2.3 69.8 ± 1.5 69.2 ± 1.3 72.5 ± 0.8 70.3 ± 0.8

MxGNN 60.3 ± 3.7 60.6 ± 4.3 74.7 ± 1.5 71.6 ± 2.1 78.2 ± 0.6 76.7 ± 0.8 71.7 ± 1.7 71.0 ± 2.0 74.5 ± 1.8 73.2 ± 2.5

SOLT-GIN 61.8 ± 6.8 62.0 ± 6.4 76.4 ± 1.8 75.1 ± 2.3 78.3 ± 1.5 77.0 ± 2.5 73.0 ± 1.4 73.1 ± 1.3 77.5 ± 1.3 74.3 ± 1.5

Table 3: Long-tailed graph classification using other GNNs as the base models.

Methods

PTC PROTEINS D&D FRANKENSTEIN IMDB-binary

Test Tail Test Tail Test Tail Test Tail Test Tail

GCN 53.5 ± 2.5 53.3 ± 2.7 74.2 ± 0.6 71.9 ± 1.0 78.5 ± 1.4 76.6 ± 1.7 71.1 ± 0.5 70.4 ± 0.9 75.7 ± 1.5 71.5 ± 1.5

SOLT-GCN 57.9 ± 4.5 61.4 ± 3.3 76.7 ± 1.6 75.1 ± 2.0 79.5 ± 2.4 78.1 ± 2.4 71.7 ± 0.4 70.7 ± 0.4 77.1 ± 1.6 73.4 ± 1.9

GraphSAGE 56.5 ± 4.5 55.1 ± 4.3 74.1 ± 1.2 72.9 ± 1.1 77.7 ± 1.7 76.1 ± 1.6 69.0 ± 3.5 67.8 ± 4.3 77.0 ± 3.0 73.4 ± 2.5

SOLT-SAGE 63.2 ± 5.6 65.3 ± 6.4 75.2 ± 0.9 74.6 ± 1.6 79.0 ± 0.6 77.6 ± 0.8 70.7 ± 1.0 69.6 ± 1.0 77.5 ± 1.7 74.5 ± 2.1

graphs by SOLT-GNN; while for head graphs, we directly employ

the representations produced by the base GNNmodel for prediction,

since their abundant structures are already representative enough.

5.2 Long-Tailed Graph Classification
We conduct long-tailed graph classification on the five benchmark

datasets for comparison. In particular, as we mainly focus on the

performance promotion of tail graphs, we report the graph classifi-

cation accuracy from two perspectives, i.e., Test (the entire testing
set) and Tail (the tail graph set in testing set).

For fair comparison, we employ GIN as the base model for all

the GNN-based approaches. To evaluate the flexibility of SOLT-
GNN on diverse GNN architectures, we further adopt GCN and

GraphSAGE as the base GNN models for extension.

Using GIN as the base model. We report the graph classification

comparison with state-of-the-art approaches in Table 2, and observe

that SOLT-GIN can generally outperform all the baselines.

In particular, we make the following observations. First, the

performance gap between entire testing set and the tail graph set

generally emerges on all approaches across the five datasets, which

demonstrates that the size-oriented long-tailed problem is univer-

sal and significant. Second, SOLT-GIN outperforms its base model

GIN with a large margin. This proves the feasibility of pattern rel-

evance extraction on head graphs, as well as the transferability

of structural information across graphs. Furthermore, by virtue

of the knowledge transfer from head to tail graphs, SOLT-GNN
can alleviate the shortage of structural information on tail graphs

to form a more comprehensive representation. Third, approaches

CurGraph and MxGNN, which investigate the graph size effect on

the performance, fail to generate expressive representations for tail

graphs. Though they treat the head and tail graphs differently, the

structure-scarce tail graphs still suffer from the lack of structural

information, which hinders the promotion of these approaches on

the tail graph representations. Fourth, graph pooling approaches

such as SortPool, DiffPool and MxGNN, have approaching per-

formance on tail graph classification compared to GIN. Though
they capitalize on the purposely designed pooling mechanisms to

enhance the graph representations, they are unable to address the

tail graph problem, thus produce inferior results.

Using other GNNs as base models. To demonstrate the flexibility

of SOLT-GNN, we further utilize GCN and GraphSAGE as the base

GNN models for evaluation. The performance results are reported

in Table 3. We can observe that, SOLT-GNN can outperform its base

GNN models in each case, showing the flexibility of SOLT-GNN to

apply with different GNN architectures for knowledge transfer to

enhance the representational capacity of tail graphs.

5.3 Model Analysis
We further analyse SOLT-GNN from several aspects for tail graph

classification, by resorting to GIN as the base GNN model.

Ablation study. To evaluate the contribution of each component

in SOLT-GNN, we conduct an ablation study by comparing with

several degenerate variants: (1) no head: we remove the graph

classification loss of head graphs, i.e., 𝛼 = 0 in Eq. (11); (2) no node-
level: we remove the node-level pattern relevance loss, i.e., 𝜇1 = 0

in Eq. (13); (3) no subg-level: we remove the subgraph-level pattern

relevance loss, i.e., 𝜇2 = 0 in Eq. (13); (4) no scale & shift: we remove

the scaling and shifting factors of pattern memory in Eq. (6).

We show the results of ablation study in Fig. 4, and make the

following observations. First, as the core design of SOLT-GNN is to

transfer knowledge from head to tail graphs, when we remove the

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Zemin Liu, Qiheng Mao, Chenghao Liu, Yuan Fang, Jianling Sun

Table 4: Impact of threshold 𝐾 (i.e., the proportion of head) on graph classification.

Methods

10% 30%

PROTEINS D&D IMDB-binary PROTEINS D&D IMDB-binary

Test Tail Test Tail Test Tail Test Tail Test Tail Test Tail

GIN 74.9 ± 1.1 73.7 ± 2.6 76.3 ± 3.4 74.6 ± 3.8 76.9 ± 1.1 74.8 ± 1.1 74.9 ± 1.1 71.1 ± 3.5 76.3 ± 3.4 71.9 ± 4.8 76.9 ± 1.1 74.7 ± 1.4

CurGIN 74.3 ± 1.6 73.5 ± 2.5 69.6 ± 2.2 68.6 ± 3.5 73.5 ± 1.7 72.0 ± 2.0 74.3 ± 1.6 72.8 ± 2.6 69.6 ± 2.2 67.7 ± 4.3 73.5 ± 1.7 69.7 ± 0.7

DiffPool 72.0 ± 1.0 70.6 ± 1.1 74.3 ± 1.1 73.9 ± 1.3 72.5 ± 0.8 70.9 ± 0.9 72.0 ± 1.0 67.2 ± 1.2 74.3 ± 1.1 70.8 ± 1.5 72.5 ± 0.8 70.5 ± 1.0

MxGNN 74.7 ± 1.5 72.7 ± 1.8 78.2 ± 0.6 77.7 ± 0.7 74.5 ± 1.8 74.0 ± 2.4 74.7 ± 1.5 72.8 ± 2.8 78.2 ± 0.6 76.2 ± 0.9 74.5 ± 1.8 74.0 ± 2.3

SOLT-GIN 77.8 ± 2.7 76.1 ± 3.0 79.5 ± 1.7 78.2 ± 1.9 78.1 ± 1.9 76.2 ± 2.3 77.1 ± 1.5 73.2 ± 2.4 80.9 ± 1.3 77.9 ± 1.5 77.1 ± 1.5 75.0 ± 1.8

Figure 4: Ablation study. Figure 5: Scalability study.

(a) Weight of head graph loss 𝛼 (b) Pattern memory dimension 𝑑𝑚

(c) Node-level co-occurrence 𝜇1 (d) Subgraph-level co-occurrence 𝜇2

Figure 6: Parameters sensitivity.

graph classification loss of head graphs, the underlying transferable

patterns cannot be effectively extracted from head graphs, resulting

in inferior performance. Second, without node- or subgraph-levels

pattern relevance loss, the performance also generally decreases,

showing that both of them can contribute to the pattern relevance

extraction. Third, without the scaling and shifting factors, SOLT-
GNN cannot well adapt the globally shared pattern memory to-

wards each query, which impairs the relevance prediction. Finally,

the whole model SOLT-GNN can achieve the best performance,

demonstrating its power for tail graph classification.

Impact of threshold 𝐾 . Though we follow the Pareto principle

[33] to determine the threshold 𝐾 , in Table 4 we also resort to

different proportions for data division, i.e., considering the 10%

and 30% largest graphs as head graphs, to compare with several

representative baselines on three datasets.We first observe that with

more graphs marked as head graphs, the performance of baselines

on tail graph classification decreases, exposing the bottleneck of

them in coping with the challenging tail graphs. Second, SOLT-GIN
can outperform the baselines with different threshold 𝐾 , which

further proves the feasibility of transferring knowledge from head

graphs to tail graphs. Third, for Test accuracy, SOLT-GIN performs

differently with varying 𝐾 ’s on different datasets, showing that the

optimal division for knowledge transfer differs across datasets.

Scalability.Wealso evaluate the scalability of SOLT-GIN on dataset

D&D which has the largest averaged graph size. In particular, we

construct eight graph groups with increasing graph size from 100

to 800, and each group contains ten graphs with approximate sizes.

We show the training and inference time per graph in Fig. 5, and

observe that both of them generally increase linearly as the graph

size increases. The linear growth demonstrates that the proposed

SOLT-GNN can scale to very large graphs in real-world scenarios.

Parameters Sensitivity. We evaluate the sensitivity of several

important hyperparameters in SOLT-GNN, and show their impact

in Fig. 6. For head graph loss weight𝛼 , too large valuesmay decrease

the contribution of tail graphs in the model training, thus impairing

the performance. In particular, relative small values such as [0.1,0.3]

can bring more benefits to the model training. For pattern memory

dimension 𝑑𝑚 , too small values may limit the storage capacity of

pattern memory, while too large values may result in overfitting.

Moderate values such as 32 or 64 would benefit the performance.

For the weight of node- and subgraph-levels co-occurrence 𝜇1 and

𝜇2, moderate values such as 𝜇1 = 1 and 𝜇2 = 1 or 10 can facilitate

the representation learning of tail graphs.

6 CONCLUSION
In this paper, we investigate a significant yet unexploited prob-

lem, size-oriented long-tailed graph classification with graph neu-

ral networks. To cope with this issue, we propose a novel model

SOLT-GNN, to enrich the structure-scarce tail graphs from the

lens of knowledge transfer. Two novel modules, i.e., co-occurrence
substructure exploitation and relevance prediction function, are

employed in SOLT-GNN. Extensive experiments on five benchmark

datasets demonstrate the effectiveness of our proposed SOLT-GNN.

ACKNOWLEDGMENTS
This research is supported by the Agency for Science, Technology

and Research (A*STAR) under its AME Programmatic Funds (Grant

No. A20H6b0151).

On Size-Oriented Long-Tailed Graph Classification
of Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Daniel Beck, Gholamreza Haffari, and Trevor Cohn. 2018. Graph-to-Sequence

Learning using Gated Graph Neural Networks. In ACL. 273–283.
[2] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,

Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph

kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.
[3] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

IEEE TKDE 30, 9 (2018), 1616–1637.

[4] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector

machines. ACM TIST 2, 3 (2011), 1–27.

[5] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and

Hongbo Deng. 2020. ESAM: Discriminative Domain Adaptation with Non-

Displayed Items to Improve Long-Tail Performance. In SIGIR. 579–588.
[6] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.

2020. Graph prototypical networks for few-shot learning on attributed networks.

In CIKM. 295–304.

[7] Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from

non-enzymes without alignments. Journal of Molecular Biology 330, 4 (2003),

771–783.

[8] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,

Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional

Networks on Graphs for Learning Molecular Fingerprints. InNeurIPS. 2224–2232.
[9] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In ICML. 2083–2092.
[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In ICML. 1263–1272.
[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD. 855–864.
[12] David Ha, Andrew Dai, and Quoc V Le. 2017. Hypernetworks. In ICLR.
[13] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1025–1035.
[14] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi

Feng, and Yannis Kalantidis. 2020. Decoupling representation and classifier for

long-tailed recognition. In ICLR.
[15] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[16] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. 2020. A survey on

graph kernels. Applied Network Science 5, 1 (2020), 1–42.
[17] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.

In ICML. 3734–3743.
[18] Yanyan Liang, Yanfeng Zhang, Dechao Gao, and Qian Xu. 2021. An End-to-End

Multiplex Graph Neural Network for Graph Representation Learning. IEEE Access
9 (2021), 58861–58869.

[19] Jialun Liu, Yifan Sun, Chuchu Han, Zhaopeng Dou, and Wenhui Li. 2020. Deep

Representation Learning on Long-tailed Data: A Learnable Embedding Augmen-

tation Perspective. In CVPR. 2970–2979.
[20] Siyi Liu and Yujia Zheng. 2020. Long-tail session-based recommendation. In

RecSys. 509–514.
[21] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven C.H. Hoi. 2021. Node-wise

Localization of Graph Neural Networks. In IJCAI. 1520–1526.
[22] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven CH Hoi. 2021. Relative and

Absolute Location Embedding for Few-Shot Node Classification on Graph. In

AAAI.
[23] Zemin Liu, Yuan Fang, Yong Liu, and Vincent W. Zheng. 2021. Neighbor-

Anchoring Adversarial Graph Neural Networks. IEEE TKDE Early Access (2021).

[24] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-GNN: Tail-Node

Graph Neural Networks. In KDD. 1109–1119.
[25] Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, and Steven CH Hoi. 2020.

Towards locality-aware meta-learning of tail node embeddings on networks. In

CIKM. 975–984.

[26] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. 2019. Graph convo-

lutional networks with eigenpooling. In KDD. 723–731.
[27] Diego Mesquita, Amauri Souza, and Samuel Kaski. 2020. Rethinking pooling in

graph neural networks. In NeurIPS.
[28] Francesco Orsini, Paolo Frasconi, and Luc De Raedt. 2015. Graph invariant

kernels. In IJCAI. 3756–3762.

[29] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron

Courville. 2018. FiLM: Visual reasoning with a general conditioning layer. In

AAAI. 3942–3951.
[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning

of social representations. In KDD. 701–710.
[31] Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. 2021. Im-

GAGN: Imbalanced Network Embedding via Generative Adversarial Graph Net-

works. In KDD. 1390–1398.
[32] Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. 2020. Asap: Adaptive

structure aware pooling for learning hierarchical graph representations. In AAAI.
5470–5477.

[33] Robert Sanders. 1987. The Pareto principle: its use and abuse. Journal of Services
Marketing 1, 2 (1987), 37–40.

[34] Aravind Sankar, JuntingWang, Adit Krishnan, and Hari Sundaram. 2021. ProtoCF:

Prototypical Collaborative Filtering for Few-shot Recommendation. In RecSys.
166–175.

[35] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-Lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[36] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten

Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In

AISTATS. 488–495.
[37] Min Shi, Yufei Tang, Xingquan Zhu, David Wilson, and Jianxun Liu. 2020. Multi-

class imbalanced graph convolutional network learning. In IJCAI.
[38] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale information network embedding. In WWW. 1067–1077.

[39] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. 2020. Long-Tailed Classifi-

cation by Keeping the Good and Removing the Bad Momentum Causal Effect. In

NeurIPS.
[40] Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph

Helma. 2003. Statistical evaluation of the predictive toxicology challenge 2000–

2001. Bioinformatics 19, 10 (2003), 1183–1193.
[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.
[42] Nikil Wale, Ian A Watson, and George Karypis. 2008. Comparison of descrip-

tor spaces for chemical compound retrieval and classification. Knowledge and
Information Systems 14, 3 (2008), 347–375.

[43] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021. Cur-

Graph: Curriculum Learning for Graph Classification. In TheWebConf. 1238–1248.
[44] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021. Mixup

for Node and Graph Classification. In TheWebConf. 3663–3674.
[45] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
TNNLS 32, 1 (2020), 4–24.

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks?. In ICLR.
[47] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In KDD.

1365–1374.

[48] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. 2021.

On Size Generalization in Graph Neural Networks. https://openreview.net/

forum?id=9p2CltauWEY

[49] Jianwen Yin, Chenghao Liu, Weiqing Wang, Jianling Sun, and Steven CH Hoi.

2020. Learning transferrable parameters for long-tailed sequential user behavior

modeling. In KDD. 359–367.
[50] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical Graph Representation Learning with Differentiable

Pooling. In NeurIPS. 4800–4810.
[51] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An

end-to-end deep learning architecture for graph classification. In AAAI.
[52] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. 2021. GraphSMOTE: Imbal-

anced Node Classification on Graphs with Graph Neural Networks. InWSDM.

833–841.

[53] Dawei Zhou, Jingrui He, Hongxia Yang, and Wei Fan. 2018. Sparc: Self-paced

network representation for few-shot rare category characterization. In KDD.
2807–2816.

https://openreview.net/forum?id=9p2CltauWEY
https://openreview.net/forum?id=9p2CltauWEY

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Zemin Liu, Qiheng Mao, Chenghao Liu, Yuan Fang, Jianling Sun

APPENDICES
A Algorithm and Complexity Analysis

Algorithm. We illustrate the model training of SOLT-GNN in

Alg. 1. In line 1, we initialize all the parameters. In lines 3-9, we ex-

ploit the co-occurrence substructures from each head graph and ac-

cumulate the pattern relevance loss. In particular, in lines 5 and 6, we

exploit the co-occurrence substructures from node- and subgraph-

levels, respectively. In lines 7 and 8, we accumulate the pattern

relevance loss for each of them. In line 9, we complement the graph

representation for each graph. In line 10, we form the graph clas-

sification loss. In line 11, we form the complement dissimilarity

constraint. In line 12, we summarize all the loss and constraints to

generate the overall objective. Finally, we optimize the objective in

line 13.

Complexity analysis. The proposed SOLT-GNN needs to exploit

the co-occurrence substructures from the head graphs, which can

be done offline. Thus, we analyse its complexity from two aspects,

i.e., offline and online. (1) Offline. Given a graph 𝐺 = {𝑉 , 𝐸,X},
for node-level substructures exploitation, we randomly sample a

positive and a negative sample for each node 𝑣 ∈ 𝑉 , thus involv-
ing complexity of 𝑂 (|𝑉 |) in all; for subgraph-level substructures

exploitation, we only generate one triplet for each graph, and con-

duct BFS to sample the query𝐺sub
on𝐺 with complexity of𝑂 (|𝑉 |),

while the generation of positive and negative samples, i.e., 𝐺rem

and 𝐺neg
, involves complexity of 𝑂 (1) and 𝑂 (|𝑉 |), respectively.

Thus, in total, the offline data preparation involves complexity of

𝑂 (|𝑉 |) for each graph. (2) Online. Given a graph 𝐺 = {𝑉 , 𝐸,X}
with averaged node degree

¯𝑑 , the complexity of a neighborhood

aggregation based GNN (e.g., GIN) is 𝑂 (|𝑉 | · ¯𝑑 · 𝐿), where 𝐿 is the

total number of GNN layers. Compared to the base GNN, in the

online period, SOLT-GNN only needs an extra complement to en-

rich each graph, and this complement can be calculated directly

by virtue of the relevance prediction function, with complexity of

𝑂 (1). Thus, the online complexity of SOLT-GNN belongs to same

complexity class with its base GNN model, i.e., 𝑂 (|𝑉 | · ¯𝑑 · 𝐿).

B Further Details of Datasets
We employ a total of five benchmark datasets, including four bioin-

formatics datasets and one social network dataset. (1) PTC [40] is a

collection of 344 chemical compounds represented in the form of

graphs, which report the carcinogenicity for rats. There are 19 node

labels, and we utilize them as the node features. (2) PROTEINS [2] is
a protein dataset, in which nodes are secondary structure elements

and edges are neighboring relations in the amino-acid sequence or

in 3D space. The graphs are labelled into two groups, i.e., enzymes

and non-enzymes. (3)D&D [7] is another protein dataset with larger

sizes. Nodes represent the amino acids, and two nodes are connected

by an edge if they are less than 6 Angstroms apart. (4) Frankenstein
[28] is a biological molecule dataset, where each graph is a molecule

with or without mutagenicity, and nodes and edges represent atoms

and chemical bonds, respectively. We employ the node degrees as

the node labels (features). (5) IMDB-binary [47] is a movie collabo-

ration dataset. Each graph corresponds to an ego-network for each

actor/actress, where nodes correspond to actors/actresses and each

edge indicates that two actors/actresses appear in the same movie.

Each graph is derived from a pre-specified genre of movies, and

is labelled by the genre of derived graph. Since there are no node

labels in IMDB-binary, we employ the node degrees as the node

labels (features).

C Further Details and Settings of Base GNN
Models

Descriptions.We describe the three base GNN models below.

• GCN [15]: GCN depends on the key operation of neighborhood

aggregation to aggregate messages from the neighboring nodes

to form the node representations. In particular, it employs a

mean-pooling to aggregate the neighborhood information.

• GraphSAGE [13]: Similar to GCN, GraphSAGE also resorts to the

neighborhood aggregation to generate the node representations

of the target nodes. Differently, it pays more attention to the

information from the target node itself.

• GIN [46]: GIN also relies on the neighborhood aggregation for

node representation learning. Furthermore, it employs a SUM-

based aggregation to replace the mean-pooling to aggregate the

messages from neighbors, which is more expressive to capture

the local structures.

Settings. We follow the model configurations in their original pa-

pers for base GNNs’ implementation. Based on the recommendation

from their original papers, we further tune the parameters for each

base GNN model to attain the optimal performance for graph clas-

sification task. In detail, for each base GNN model, we resort to a

five-layer architecture followed with a SUM-pooling layer, which

is proposed by GIN [46] and can benefit the graph representation

learning. We set the number of hidden units as 32 for all of them

on bioinformatics datasets and 64 on IMDB-binary. And we set the

dropout rate as 0.5. For GraphSAGE, we employ the mean-pooling

as its aggregator.

D Further Details of Baselines
To comprehensively evaluate the proposed SOLT-GNN against

the state-of-the-art approaches, we consider a series of baselines

from three main categories, graph kernel approaches, graph neural
networks and graph pooling approaches.
(1) Graph kernel approaches.
• GK: Graphlet Kernel [36] counts graphlets on graphs and

use graphlet distribution to learn graph representations.

• WL:Weisfeiler-Lehman Subtree Kernel [35] iteratively up-

dates a node’s feature vector based on its neighbors’ features

to encode the structural information of graphs.

(2) Graph Neural Networks.
• Mixup:Mixup [44] applies both node-level and graph-level

Mixup methods on graph neural networks to combat the

over-fitting of graph neural networks, andwe consider graph-

levelMixup for graph classification.

• CurGraph: CurGraph [43] utilizes curriculum learning to

help the training process of GNNs for effective representa-

tions. To sufficiently investigate the performance of head

graphs and tail graphs, we use graph size as the heuristic

difficulty metric for graph data.

On Size-Oriented Long-Tailed Graph Classification
of Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Algorithm 1Model Training for SOLT-GNN

Input: Training graphs set Gtr with labels 𝑌tr, hyper-parameters 𝐾 , 𝛼 , 𝜆, 𝜇1, and 𝜇2.

Output: Model parameters Θ.
1: initialize parameters Θ;
2: while not converged do
3: for each graph𝐺𝑖 ∈ Gtr do
4: if 𝐺𝑖 ∈ Ghead then ⊲ Co-occurrence substructures exploitation

5: sample node-level triplets T
node

;

6: sample subgraph-level triplets T
subg

;

7: Lnode

rel
← Lnode

rel
−∑(𝑞,𝑎,𝑏)∈T

node

ln𝜎 (sim(r𝑞, h𝑎) − sim(r𝑞, h𝑏)) ; ⊲ Node-level pattern relevance loss, Eq. (4)

8: Lsubg

rel
← Lsubg

rel
−∑(𝑞,𝑎,𝑏)∈T

subg

ln𝜎 (sim(r𝑞, h𝑎) − sim(r𝑞, h𝑏)) ; ⊲ Subgraph-level pattern relevance loss, Eq. (5)

9:
˜h𝐺𝑖
← h𝐺𝑖

+ 𝜙𝑟 (h𝐺𝑖
;𝜃𝑟) = h𝐺𝑖

+ r𝐺𝑖
; ⊲ Enrich graph representation, Eq. (10)

10: L
task
← 𝛼 · ∑𝐺𝑖 ∈Gtr∩Ghead CrossEnt(˜h𝐺𝑖

, y𝑖) + (1 − 𝛼) ·
∑
𝐺𝑖 ∈Gtr∩Gtail CrossEnt(˜h𝐺𝑖

, y𝑖) ; ⊲ Task loss, Eq. (11)

11: L
dis
← ∑

𝐺𝑖 ∈Gtr sim(h𝐺𝑖
, r𝐺𝑖
) ; ⊲ Complement dissimilarity constraint, Eq. (12)

12: L ← L
task
+ 𝜆 · L

dis
+ 𝜇1 · Lnode

rel
+ 𝜇2 · Lsubg

rel
+ Ω (Θ) ; ⊲ Overall objective, Eq. (13)

13: update Θ by minimizing L;
14: return Θ.

(3) Graph pooling approaches.
• SortPool: SortPool [51] applies a GNN architecture and re-

sorts to a top-𝑘 pooling mechanismwhich sorts nodes within

the graph according to their structural roles. The sorted node

features are then fed into the convolutional and dense layers

to learn graph representations.

• DiffPool:DiffPool [50] is a differentiable graph poolingmethod

that can learn hierarchical representations in an end-to-end

fashion, and a clustering assignment matrix is proposed to

coarsen the graphs.

• MxGNN: MxGNN [18] comprises multiple graph convo-

lution networks with different hyperparameters to learn

effective graph representations for graphs with different

properties, and DiffPool layers are applied as the pooling

mechanism.

E Hyperparameters Settings

Baselines. For baselineGK, we set the size of graphlets as 3, and use
C-SVM [4] with linear kernel to implement the graph classification.

ForWL [35], we search the height parameter of WL in {0, 1, 2, 3, 4, 5}
and also use C-SVM with linear kernel to implement the graph

classification. For Mixup [44], we employ GIN [46] as the base

model to implement Mixup, and the configuration of Mixup is the

same to GIN. For CurGraph [43], to investigate the effect of graph

size, we use graph size as the difficulty metric for graph data which

is treated as a heuristics metric in their original paper. We divide

graphs into four groups according to their sizes, and treat large

graphs as difficult data and train GIN in an easy-to-difficult order.

For SortPool [51], according to the original paper, we set the pooling
ratio 𝑘 for each dataset such that 60% graphs have nodes more than

𝑘 . The hidden dimension of graph convolution layers are set as 32

for all datasets. For DiffPool [50], we use a total of two DIFFPOOL
layers, and three graph convolution layers are employed after each

DIFFPOOL layer. And we set the hidden dimension of convolution

layers as 32 and the number of clusters as 10. For MxGNN [18], we

keep the based configuration of MxGNN consisitent with DiffPool
and run two graph convolution networks separately to deal with

head and tail graphs, respectively. For the hidden dimensions of

the two graph convolution networks, we set them as 80 and 30 for

head and tail graphs, respectively.

Our model. For co-occurrence substructures exploitation, on each

head graph, we randomly generate one node-level triplet for each

node, and one subgraph-level triplet for this graph. The size of

sampled query subgraphs, i.e., 𝑡 , is set to𝑚𝑖𝑛(𝑘, |𝑉 |/2) in order to

mimic the tail graphs, as well as to avoid the left structure which

serves as the positive sample being too small. For the hyperpa-

rameters of SOLT-GNN, we set weight 𝛼 = 0.05 for D&D, 0.1 for

FRANKENSTEIN, 0.15 for PROTEINS and IMDB-binary, and 0.3 for

PTC. For weight 𝜇1, we set weight 0.5 for IMDB-binary, 1.5 for PTC,
and 2 for the other datasets. For weight 𝜇2, we set weight 0 for

FRANKENSTEIN, 1.5 for PTC, and 2 for the other datasets. We set

𝜆 = 0 for FRANKENSTEIN and 𝜆 = 1𝑒 − 4 for the other datasets, and

set dimension of pattern memory 𝑑𝑚 = 16 for IMDB-binary and 64

for the other datasets.

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Problem Formulation
	3.2 Graph Neural Networks

	4 The Proposed Model: SOLT-GNN
	4.1 Co-occurrence Substructures Exploitation
	4.2 Realizing Pattern Relevance Prediction
	4.3 Training Constraints and Objective

	5 Experiments
	5.1 Experimental Setups
	5.2 Long-Tailed Graph Classification
	5.3 Model Analysis

	6 Conclusion
	Acknowledgments
	References
	A Algorithm and Complexity Analysis
	B Further Details of Datasets
	C Further Details and Settings of Base GNN Models
	D Further Details of Baselines
	E Hyperparameters Settings

