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Abstract—In this paper, we study the problem of using rep-
resentation learning to assist information diffusion prediction on
graphs. In particular, we aim at estimating the probability of an
inactive node to be activated next in a cascade. Despite the success
of recent deep learning methods for diffusion, we find that they
often underexplore the cascade structure. We consider a cascade
as not merely a sequence of nodes ordered by their activation
time stamps; instead, it has a richer structure indicating the
diffusion process over the data graph. As a result, we introduce
a new data model, namely diffusion topologies, to fully describe
the cascade structure. We find it challenging to model diffusion
topologies, which are dynamic directed acyclic graphs (DAGs),
with the existing neural networks. Therefore, we propose a novel
topological recurrent neural network, namely Topo-LSTM, for
modeling dynamic DAGs. We customize Topo-LSTM for the
diffusion prediction task, and show it improves the state-of-the-
art baselines, by 20.1%–56.6% (MAP) relatively, across multiple
real-world data sets.

I. INTRODUCTION

Information diffusion is a common phenomenon on social
networks [1], [2]. Its modeling has many applications, such
as helping to predict which user is an opinion leader [3],
how much a cascade will grow [4], who are the diffusion
sources [5], which user will digg a particular story [6], and so
on. In this paper, we study the task of information diffusion
prediction. The goal is to design an effective diffusion model,
which can estimate the activation probability for an inactive
node in a cascade. We consider the most standard setting of
information diffusion, where we have inputs of: 1) a data
graph G = (V, E), where V is the set of nodes and E is the
set of edges; 2) a set of cascade sequences, each of which is
an ordered sequence of node activation over V . For example,
in Fig. 1, the data graph G is a network of seven nodes; a
cascade sequence A→ B→ C →D is a sequence of nodes
ordered by their activation time stamps.

Early work assumes diffusion model as given, such as inde-
pendent cascade (IC) and linear threshold (LT) [3]. There are
many extensions of the IC and LT models, such as continuous-
time IC [7]. Besides, the IC and LT models also enable an
important research direction of influence maximization [8],
[9], [10]. Recent work tries to learn a diffusion model from the

available cascade data. They often rely on explicitly engineer-
ing useful features to predict the activation probability of a
node, such as network structure and temporal information [4],
user nodes’ social roles [11], diffusion content [12] and user
nodes’ interactions [13]. Although these methods have shown
significant improvements in diffusion prediction performance,
the feature engineering process requires much manual effort
and extensive domain knowledge. With the recent development
of neural networks, recent work starts to exploit deep learn-
ing, so as to avoid explicit feature engineering for diffusion
modeling. A small number of pioneer work uses graph em-
bedding to model diffusion. For example, Embedded-IC [14]
takes a cascade-based modeling approach, which considers
each inactive node to be activated by the active nodes. It
differentiates two kinds of roles for the nodes; i.e., an active
node serves as a “sender”, and an inactive node serves as
a “receiver”, so that the inactive node receives information
from the active nodes in a diffusion cascade. For each role,
it learns a vector as a node’s embedding. Then, it models
an activation based on the closeness between an inactive
node’s receiver embedding vector and the active nodes’ sender
embedding vectors. DeepCas [15] is designed to predict the
future cascade size. It models the cascade at each time step
with an induced subgraph over the active nodes. Then, it
decomposes the subgraph into some random walk paths, and
uses Gated Recurrent Unit (GRU) [16] to learn an embedding
vector of the subgraph. Based on this subgraph embedding
vector, it predicts the cascade size in the future.

Despite the success of these deep learning methods for
diffusion modeling, we find that they often underexplore the
cascade structure. A cascade is not merely a sequence of nodes
ordered by the activation time stamps; instead, it has a richer
structure indicating the diffusion dynamics over the data graph.
For example, in Fig. 1, to represent the cascade from A to
D, we shall describe how it spreads over the data graph G.
Particularly, when A is activated at the first place, it has a
chance to activate its neighbors in G, which are {B,C, F}.
By drawing an arrow from A to each of its neighbors to
show the possible activation attempts, we have a diffusion
topology to characterize the cascade until the current time
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Fig. 1. Illustration of diffusion cascade modeling. At each time stamp t, we
construct a diffusion topology, which characterizes the cascade status until t.
In each diffusion topology, a solid circle is an active node, a dotted circle is
an inactive node, and an arrow is a possible activation attempt.

stamp in Fig. 1(a). Similarly, when B is activated next, it
also has a chance to activate its (inactive) neighbors {C,E}.
As a result, we have another diffusion topology in Fig. 1(b)
for the new time stamp. Such diffusion topologies are useful
for diffusion prediction; e.g., a Twitter user is more likely to
propagate a piece of news to her friends, if that news has been
retweeted by many celebrities. However, the existing deep
learning methods for diffusion modeling do not take diffusion
topologies into consideration. For example, in Embedded-IC
[14], an activation at time stamp t is enabled between an
inactive node and all the existing active nodes by t, regardless
of the network structure. Therefore, the embedding of each
sender (i.e., active node) is learned without the diffusion
topologies. In DeepCas [15], the induced subgraph at each
time step does not capture how the diffusion spreads; besides,
each subgraph is further decomposed into paths and embedded
independently, thus the resulting node embedding is only
partially aware of the data graph structure.

In this paper, we study how to fully explore the cascade
structure by deep learning for diffusion prediction. Generally,
in cascade dynamics, the active nodes try to “send” informa-
tion to the inactive nodes; upon successfully “receiving” the
information, an inactive node becomes activated. Motivated by
such cascade dynamics, we choose to differentiate two roles
for each node; i.e., each active node acts as a “sender” and each
inactive node acts as a “receiver”. Therefore, to enable deep
learning for diffusion modeling, we try to embed each active
node with a sender embedding vector, and each inactive node
with a receiver embedding vector, such that we can simply
predict a node activation based on these embedding vectors.
Although such a “sender”-vs-“receiver” role differentiation is
also adopted by Embedded-IC, we approach the embedding
problem differently. In Embedded-IC, each sender (or receiver)
embedding is considered as encoding the static preferences
of a sender (or receiver). Such a formulation overlooks the
dynamic context of diffusion topologies; i.e., once the sender
embedding of an active node and the receiver embedding of
an inactive node are fixed, the resulting activation probability
based on these two embedding vectors is also fixed, regardless
of how the cascade grows over time. As discussed earlier,
such dynamic context of diffusion topologies are useful for
diffusion prediction. Therefore, we should consider the sender
embedding as encoding not only the active node’s static ten-

dency, but also the dynamic context of the diffusion topology.
As the inactive nodes have not participated in the cascade so
far, it is reasonable to consider each receiver embedding as
only encoding its inactive node’s static preferences.

Technically, it is not trivial to learn sender embedding with
diffusion topologies. This is because each diffusion topology
is a directed acyclic graph (DAG) and it evolves over time.
On the one hand, we cannot over-simplify the dynamic DAGs
into a set of independent nodes or a set of random walk
paths for learning the sender/receiver embedding, since these
over-simplified formulations are unable to fully exploit the
topologies of cascades on the network. On the other hand,
due to the dynamic nature of diffusion topologies, we are
looking for a recurrent neural network (RNN) formulation.
To the best of our knowledge, however, there is no RNN that
is able to handle such dynamic DAG structure of a diffusion.
For example, the existing RNN models mainly focus on either
sequence-structured inputs, such as Long Short-Term Memory
(LSTM) [17] and GRU, or tree-structured inputs, such as
Tree-LSTM [18]. There are a handful of RNN models that
try to model static DAGs designed for different application
domains; e.g., DAG-RNN [19], [20] models each 2D image
as a DAG for scene labeling, while RNN-LE [21] models each
contact map over a protein’s amino acids as a DAG for protein
structure prediction. However, both DAG-RNN and RNN-LE
are based on the plain RNN architecture, and are unable to
capture the peculiarities of a diffusion process. Thus, an RNN
architecture tailed for diffusion is required.

To model the diffusion topologies, we propose a novel
Topological LSTM (Topo-LSTM) model. Topo-LSTM is a
DAG-structured RNN, which takes dynamic DAGs as inputs
and generates a topology-aware embedding for each node in
the DAGs as outputs. In the application of diffusion prediction,
we use Topo-LSTM to learn the sender embedding for each
node vt activated at time t in a cascade. We ensure the learned
sender embedding of vt as fully aware of which other nodes
have been activated so far and how the diffusion spreads to
reach vt. For example, in Fig. 1, the sender embedding of an
active node C knows that A and B have been activated, and
the diffusion spreads like Fig. 1(b) before activating C. We
consider each inactive node as having a receiver embedding,
which is independent of the cascade to indicate the node’s
intrinsic preference. We also learn the receiver embedding
for each inactive node, and use it to predict an activation
based on its closeness to the active nodes’ sender embeddings.
It is worth noting that, our model has few hyperparameters,
including an embedding dimension and a trade-off parameter
for model regularization. This makes our model easy to tune
in practice, compared with other graph-based deep learning
methods, which require additional hyperparameters for either
graph sampling or objective functions [22], [23], [15].

We summarize our contributions as follows.
• We propose a new data model, namely diffusion topology,

to fully explore the diffusion structure.
• We propose a novel Topo-LSTM model, which is able to

handle the dynamic DAG structure of diffusion topologies
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and tailored for the task of node activation prediction.
• We evaluate Topo-LSTM on several public real-world

data sets, and show that Topo-LSTM significantly out-
performs the state-of-the-art baselines.

II. RELATED WORK

In diffusion prediction, early work assumes the diffusion
model as given. For example, in [3], IC and LT models are
used for influence maximization. Some other work tries to
learn the diffusion model from the cascade data. For example,
in [24], the diffusion model is formulated as a learnable
coverage function. In [25], both the internal and external
influences are modeled, with some parameters to be learned.
In this paper, we focus on the task of diffusion prediction,
and aim to learn an activation function from the data. In
diffusion prediction, most existing work relies on extracting
useful features for activation prediction. For example, in [4],
various features are exploited, including content, user, time
and network structure. Some recent studies use deep learning
to avoid feature engineering for diffusion prediction. As intro-
duced in Sect. I, both Embedded-IC [14] and DeepCas [15]
are shown to significantly improve the diffusion prediction.
Wang et al. [26] proposes a model similar to Embedded-IC
which computes two low-dimensional vectors for each node
to capture its influence and susceptibility. However, they tend
to underexplore the cascade structure. In comparison, we try to
fully explore the diffusion dynamics with diffusion topologies.
Recently, Du et al. [27] uses RNN to model linear sequences
of events with timestamps. However, their model cannot be
applied to information diffusion in networks.

In the recent development of recurrent and recursive neural
networks, multiple types of data structures are considered.
Standard RNNs are designed for sequences; e.g., LSTM
and GRU are used to model music and speech [16]. Tree-
structured RNN are exploited especially in natural language
processing. For example, to model the dependency tree in
word embedding, a DT-RNN is proposed [28]. In [18], a
tree-LSTM is introduced to model the syntactic properties of
combining words to phrases. In [29], a RNNG is developed to
encode a parse tree. There are a handful of RNNs designed for
DAGs in various applications. For example, in scene labeling
[19], an image is segmented into a 2D lattice, from which
several DAGs are extracted by a tree-reweighted max-product
algorithm; then, a DAG-RNN is introduced for modeling.
In protein structure prediction [20], a contact map over the
amino acids of a protein is decomposed into a DAG by
traversing the map in certain directions; then another DAG-
RNN is developed. In face detection from images [21], a
region adjacency graph with labeled edges is first extracted
from each image; then, the graph is decomposed into an edge-
labeled DAG by breadth-first search, and modeled by a RNN-
LE.

Compared with the above DAG-structured RNNs, we have
two major differences. First, our Topo-LSTM is designed for
dynamic DAGs, where the DAGs (i.e., diffusion topologies)

TABLE I
LIST OF NOTATIONS.

Symbol Description
vt The node activated at time t in a cascade.
ht Sender embedding of active node vt.
gj Receiver embedding of inactive node vj .

Q1:t−1 Set of active nodes before time t
G∗t Diffusion topology at time t.
Pv,t Precedent set of node v at time t.
xv Feature vector of node v.
φ(·) An aggregation operator.
ρv,t Activation score of node v at time t.

evolve over time. In contrast, the input DAGs of both DAG-
RNNs and RNN-LE are static (e.g., images and protein struc-
tures). Second, our Topo-LSTM is designed for a different
application. Due to domain differences, we cannot directly
apply DAG-RNNs and RNN-LE to our diffusion prediction
task. For example, DAG-RNNs are customized for images,
which are 2D lattices with fixed orders, instead of a real graph
as used in information diffusion. RNN-LE requires the DAGs
to have edge labels, which are not available in our problem.
Also, at each time step, in their models a recurrent unit can
take only take a single type of inputs from their precedents,
whereas the diffusion problem requires our model to take
inputs from different types of precedents (i.e., predecessors of
the current node v.s.others in the diffusion topology), in order
to account for the different types of influences from previously
activated nodes on the current node. Third, they are based on
the plain RNN architecture, which are insufficient to model
the complexity of a diffusion process, and suffer from the
vanishing/exploding gradient issues.

Finally, there is a relevant line of research on graph embed-
ding. Graph embedding aims to output a vector representation
for each node in the graph, such that two nodes “close” on the
graph have similar vector representations in a low-dimensional
space. Specifically, earlier node embedding methods, such as
LLE [30], often focus on preserving first-order proximity,
where two nodes directly linked in the graphs have similar
embedding vectors. More recent methods, such as DeepWalk
[22] and Node2Vec [23], start to consider preserving second-
order proximity, where two nodes sharing similar “neighbors”
have similar embedding vectors. LINE [31] tries to preserve
both first- and second-order proximity. GraRep [32] and HOPE
[33] preserve high-order proximity by learning node embed-
ding from a high-order adjacency matrix. Although such graph
embedding methods are successful for many applications, they
are designed for general purpose node embedding to preserve
the data graph structure, thus it is unable to incorporate the
cascade information for diffusion modeling.

III. DIFFUSION MODELING

We study the task of diffusion prediction that aims to
estimate which node to activate next based on a cascade of
node activations on a data graph. To formalize our problem,
we first introduce some terminologies. We also summarize our
notations in Table I for reader’s reference.



Definition 1: A data graph is G = (V, E), where V is the
node set, and E is the edge set.

Definition 2: A cascade sequence is an ordered sequence
of tuples s = {(v1, t1), ..., (vT , tT )}, where each vj is a
distinct node in V , and each tj is a time stamp such that
tj < tj+1.

As problem input, we have a data graph G and a set
of training cascade sequences S = {s1, ..., sn}. It is worth
noting that, in this paper we consider the most basic setting
of information diffusion [14], [15]. Specifically, we do not
assume the diffusion content information as available in the
data graph and the cascade sequences. Besides, we do not
assume the exact time information (i.e., what time each tj
refers to) in each cascade sequence as known either; instead,
we only rely on the order of the nodes in each cascade
sequence, and thus we could equivalently rewrite the cascade
as s = {(v1, 1), ..., (vT , T )}. We leave incorporating content
and exact time information as future work. As problem output,
we have a diffusion model M, which is able to predict a
node to activate at time t, given a test cascade sequence
s′ = {(v′1, 1), ..., (v′t−1, t− 1)}.

We use a deep learning approach to learnM. As motivated
in Sect. I, we consider the “sender”-vs-“receiver” role differ-
entiation in node embedding. Particularly, we try to learn a
sender embedding ht ∈ Rd for each active node vt, and a
receiver embedding gj ∈ Rd for each inactive node vj . As
a result, we define the activation probability of an inactive
node vj at time t by a function over gj and all the active
nodes {h1, ...,ht}. Ideally, we expect the sender embedding
ht to encode not only the static preferences of vt, but also
the dynamic contex of how a cascade propagates to vt until
time t. That is, we need to learn ht progressively over time
for each cascade sequence, based on who vt is and how the
cascade dynamics looks like. As the inactive node vj has not
participate in the cascade yet, we let its receiver embedding
gj only encode the static preferences of vj . That is, gj is only
dependent on who vj is, regardless of the cascade sequences.

The challenge of learning M is that, we need to make the
sender embedding be fully aware of the cascade dynamics,
which describes how a cascade sequence spreads over the
data graph. To address this challenge, we introduce a new
data model, namely diffusion topology, to model the cascades
(Sect. III-A). Then we develop a novel Topo-LSTM model to
learn the sender embedding for active nodes and the receiver
embedding for inactive node with the diffusion topologies
(Sect. III-B). Finally, we use both the sender embeddings and
the receiver embeddings to develop an activation function, and
use the ground truth node activation as supervision to train the
Topo-LSTM (Sect. III-C).

A. Diffusion Topology as Data Model

We discuss how to prepare the cascade data for learning
the sender embedding for each active node. For a cascade se-
quence s = {(v1, 1), ..., (vT , T )}, we denote Q1:t−1 as the set
of active nodes in s before time t; i.e., Q1:t−1 = {v1, ..., vt−1}.
Ideally, as the sender embedding of vt, ht needs to be fully

aware of the cascade dynamics; i.e., it knows not only which
nodes are in Q1:t−1, but also how the diffusion spreads to
reach vt. Let us consider the cascade sequence in Fig. 1.
C’s sender embedding hC is supposed to encode the cascade
dynamics that, Q1:2 = {A,B} have been activated and the
diffusion, before activating C, has spreaded like Fig. 1(b). In
general, a diffusion topology such as Fig. 1(d) is not explicitly
available in Q1:t−1; instead, it needs to be constructed from
Q1:t−1 and the data graph G. We remark that, for each vt,
there is only one unique diffusion topology; this is because at
different time stamps, the set of active nodes and their cascade
structures are different.

Definition 3: For a cascade s = {(v1, 1), ..., (vT , T )} and a
data graph G = (V, E), the diffusion topology of s at time t is
a directed graph G∗t = (V, E∗t ), where E∗t = {(vi, u)|(vi, u) ∈
E , vi ∈ Q1:t−1, u ∈ (V\Q1:t−1)∪Qi+1:t−1} is a set of directed
edges, indicating all the possible activation attempts until t.

For an edge (vi, u) ∈ E∗t , vi already became active at time
i ≤ t − 1. Depending on whether u is active or not by the
time t− 1, this edge (vi, u) has different kinds of semantics.
Specifically, if u ∈ (V\Q1:t−1), i.e., u is inactive by time t−1,
then (vi, u) indicates a possible “future activation” attempt
from vi to u. If u ∈ Qi+1:t−1, i.e., u became active after
time i and before time t− 1, then it indicates a possible “past
activation” from vi to u. Because in both of the above cases,
vi always tries to activate u, we call vi as a precedent of u, for
each (vi, u) ∈ E∗t . Given the diffusion topology G∗t = (V, E∗t )
at time t, we denote the precedent set of each v ∈ V at time
t as Pv,t = {vi|(vi, v) ∈ E∗t }. As we can see, a diffusion
topology fully characterizes the cascade structure on the data
graph, thus it is suitable for us to use as a data model for
diffusion representation learning.

Properties and implications. We conclude two important
properties of diffusion topology from Def. 3:
• Each diffusion topology is a directed acyclic graph

(DAG). This is because the directed edges in a diffusion
topology are always from a node activated earlier, to
another node which is to be activated later; there is strictly
no cycle.

• The diffusion topologies for a cascade are monotonically
growing over time. This is because the diffusion topology
at time t is always a supergraph of that at time t−1, due
to its introducing new edges.

The two properties of diffusion topology has important im-
plications. Firstly, learning ht with dynamic diffusion topolo-
gies is not trivial, because no prior RNNs are designed for
dynamic DAGs. This motivates us to design a novel neural
network model. Secondly, ht can be learned recurrently from
the earlier hi’s (i = 1, ..., t−1), since these hi’s have encoded
the diffusion topologies before time t, which are essentially
subgraphs of the diffusion topology at time t.

In all, we propose to use diffusion topologies as our data
model to learn the sender embedding. We emphasize that our
diffusion topology data model is new. In the existing literature,
Embedded-IC’s data model is a set of independent nodes [14],



which are not aware of the data graph structure; DeepCas’s
data model is a set of independent paths sampled from the
induced subgraph over the active nodes at each time t [15], and
each path alone only partially captures the cascade structure.

B. Diffusion Topology Embedding

Next we discuss how to learn vt’s sender embedding ht

from the diffusion topology G∗t at time t and the earlier
activated nodes Q1:t−1’s sender embeddings {h1, ...,ht−1}.
As discussed in Sect. III-A, ht can be learned recurrently from
{h1, ...,ht−1}. This motivates us to extend a Recurrent Neural
Network (RNN) framework to develop our embedding model.

LSTM is a popular neural network architecture designed
for RNN to address the vanishing/exploding gradient issues
[17]. The unit of an LSTM network is the memory cell, which
has an input gate, a neuron with a self-recurrent connection, a
forget gate, and an output gate. The input gate allows incoming
signal to alter the memory cell’s state or block it. The self-
recurrent connection balances signals from the previous time
step and the current time step. The forget gate modulates the
memory cell’s self-recurrent connection, allowing the cell to
remember or forget its previous state, as needed. The output
gate allows the state of the memory cell to affect other neurons
or prevent it. The standard LSTM is designed for sequences,
but not DAGs. The recent Tree-LSTM [18] cannot handle
DAGs either. The existing RNN models that take DAGs as
inputs, such as DAG-RNN [19] and RNN-LE [21], do not
exploit the LSTM architecture. To the best of our knowledge,
LSTM has not been used to model DAGs before. Besides,
these existing RNN architectures are designed for different
application domains and are not applicable to our problem.

We extend standard LSTM to Topo-LSTM for modeling
the diffusion topologies, which are DAGs. To assist model
development, we use Fig. 1 as a running example. The overall
architecture of the Topo-LSTM model is also illustrated in
Fig. 2 using the diffusion topology in Fig 1(d) as an example.

Running Example. As in Fig. 1, we are given a cascade
sequence {(A, 1), (B, 2), (C, 3), (D, 4)}. At time t = 1, the
diffusion topology is G∗1 = (V, E∗1 ) with E∗1 = ∅. Denote xi ∈
{0, 1}|V| as the feature vector for node vi. For example, xi

could be the one-hot ID vector where xi has 1 on its ith entry
and all zeros elsewhere. As illustrated in the network slice at
t = 1 in Fig. 2, similar to standard LSTM, we take A’s feature
vector xA as input and transform it to a dense vector hA as
output. At t = 2, as A has been activated, we have Q1:1 = {A}
and G∗2 = (V, E∗2 ) with E∗2 = {(A,B), (A,C), (A,F )}, as
shown in Fig. 1(a). The precedent set for B is PB,2 = {A}.
To make hB aware of the cascade structure so far, we
infer hB from both B’s feature vector xB and the possible
activation attempt from PB,2. These operations at t = 2
are illustrated by the network slice at t = 2 in Fig. 2. At
t = 3, we have Q1:2 = {A,B} and G∗3 = (V, E∗3 ) with
E∗3 = {(A,B), (A,C), (A,F ), (B,C), (B,E)}, as shown in
Fig. 1(b). Given PC,3 = {A,B}, we infer hC from C’s feature
vector xC and the possible activation attempts from PC,3. The

network slice at t = 3 in Fig. 2 depicts the above operations
for t = 3. At t = 4, Q1:3 = {A,B,C} but this time there is no
link from Q1:3 to D on G. As also shown in the slice at t = 4
in Fig. 2, there is no incoming edge into Topo-LSTM unit
corresponding to t = 4. Thus PD,4 = ∅ and G∗4 = (V, E∗4 )
with E∗4 = {(A,B), (A,C), (A,F ), (B,C), (B,E), (C,G)},
as shown in Fig. 1(c). Then, we infer hD from D’s feature
vector xD and the other already activated nodes Q1:3\PD,4 =
{A,B,C}. Note that in Fig. 2, we neglect the incoming edges
from D’s non-neighbors into Topo-LSTM unit of D, in order
to keep the diagram uncluttered.

Formulation of Topo-LSTM. We now formalize the running
example to develop the Topo-LSTM model. For a cascade se-
quence s = {(v1, 1), ..., (vT , T )}, to infer vt’s embedding ht,
we consider three parts of information: (1) vt’s feature vector
xt; (2) the possible activation attempts from vt’s precedent set
Pvt,t; (3) the other already activated nodes Q1:t−1\Pvt,t. For
(2) and (3), because all the nodes in Q1:t−1 already have their
embedding inferred by time t, we can just use their hi’s (for
i = 1, ..., t− 1).

Next we introduce Topo-LSTM, which makes two important
changes to the standard LSTM to accommodate the dynamic
DAG structure.
• Different types of inputs: for each node vt, there are two

types of active nodes that can contribute to learn vt’s
sender embedding, including: 1) the active nodes that are
directly linked with vt, denoted as vi ∈ Pvt,t; 2) the
other active nodes that are not linked with vt, denoted
as vj ∈ (Q1:t−1\Pvt,t). These two different types of
active nodes are expected to contribute differently to
vt’s sender embedding learning, thus we should separate
them. Comparatively, in standard LSTM all the cells
consider the same type of inputs.

• Multiple inputs in each type: for each node vt, we have
multiple inputs from each type of active nodes, including:
1) the send embedding hi’s for vi ∈ Pvt,t; 2) the sender
embedding hj’s for vj ∈ (Q1:t−1\Pvt,t). Therefore, to
compute the contribution of each type of active nodes,
we need to aggregate its multiple inputs (either the hi’s
or the hj’s). Comparatively, in standard LSTM each cell
only takes one input from its precedent node.

To incorporate these two important differences, we change the
memory cell design of the standard LSTM. Specifically, we
separate the two types of inputs, and for each type of input,
we aggregate the corresponding multiple nodes’ embeddings:

h
′(p)
t = φ({hv|v ∈ Pvt,t}), (1)

h
′(q)
t = φ({hv|v ∈ Q1:t−1\Pvt,t}), (2)

where the superscript (p) denotes the input aggregation for the
active nodes that are directly linked with vt, and the superscript
(q) denotes the input aggregation for the other active nodes
that are not linked with vt. Besides, φ(·) is an aggregation
function; e.g., we can define it either as a simple pooling or
with a more sophisticated attention mechanism [34], [35]. In
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Fig. 2. The Topo-LSTM framework (using the diffusion topology in Fig 1(d) as an example).

this paper, we use mean pooling and leave the other kinds of
definitions as future work. Similar to LSTM, our Topo-LSTM
also has a memory cell with several gates and a cell state. In
the following, we denote d as the hidden dimensionality of
LSTM, m = |V|, and � as an elementwise multiplication. In
the following, we continue to use the superscripts (p) and (q),
to differentiate the parameters that are used for modeling the
inputs from the active nodes linked with vt or not.

• Input gate: Denote Wi ∈ Rd×m, U (p)
i ∈ Rd×d, U (q)

i ∈
Rd×d and bi ∈ Rd as parameters. We compute the input gate
activation vector it ∈ Rd as

it = σ(Wi xt + U
(p)
i h

′(p)
t + U

(q)
i h

′(q)
t + bi). (3)

• Forget gates: Denote Wf ∈ Rd×m, U (p)
fp ∈ Rd×d, U (q)

fp ∈
Rd×d, U (p)

fq ∈ Rd×d, U (q)
fq ∈ Rd×d and bf ∈ Rd as

parameters. Because we have two different types of inputs,
inspired by the Tree-LSTM [18], we introduce two separate
forget gates to control how much information we should forget
for each type of inputs. Then we compute the forget gate
activation vectors f

(p)
t ∈ Rd and f

(q)
t ∈ Rd as

f
(p)
t = σ(Wf xt + U

(p)
fp h

′(p)
t + U

(p)
fq h

′(q)
t + bf ), (4)

f
(q)
t = σ(Wf xt + U

(q)
fp h

′(p)
t + U

(q)
fq h

′(q)
t + bf ). (5)

• Cell states: To take the cell states from two different types
of inputs, we also define two separate aggregation functions:

c
′(p)
t = φ({cv|v ∈ Pvt,t}), (6)

c
′(q)
t = φ({cv|v ∈ Q1:t−1\Pvt,t}). (7)

Denote Wc ∈ Rd×m, U (p)
c ∈ Rd×d, U (q)

c ∈ Rd×d and bc ∈ Rd

as parameters. We compute the cell activation ct ∈ Rd as

c̃t = tanh(Wc xt + U (p)
c h

′(p)
t + U (q)

c h
′(q)
t + bc), (8)

ct = it � c̃t + f
(p)
t � c

′(p)
t + f

(q)
t � c

′(q)
t . (9)

• Output gate: Denote Wo ∈ Rd×m, U (p)
o ∈ Rd×d, U (q)

o ∈
Rd×d as weight matrices, bo ∈ Rd as a bias vector. We
compute the output gate activation vector ot ∈ Rd as

ot = σ(Wo xt + U (p)
o h

′(p)
t + U (q)

o h
′(q)
t + bo). (10)

Finally, the output vector ht ∈ Rd at time t is

ht = ot � tanh(ct). (11)

C. Activation Prediction

At time t + 1, given the sender embeddings {h1, ...,ht}
and the diffusion topology G∗t+1, we can predict an activation
probability for each inactive node v. We first assume that
an activation can happen from an active node to its inactive
neighbors. For example, according to the diffusion topology in
Fig. 1(b), we can activate C by the already activated neighbors
A and B. Denote gv ∈ Rd as the receiver embedding for node
v and bv ∈ R as the bias parameter for v. We compute the
score for activations as

ρv,t+1 = φ({hi|vi ∈ Pv,t+1}) · gv + bv. (12)

In practice, there could also exist some node v, which becomes
activated even though it does not have any edge to the already
active nodes in the data graph; e.g., node D in Fig. 1(d). This
is possible because that some edges between this node v and
those already activated nodes are missing in the data graph.
Therefore, to address this issue, we further extend Eq. 12 to
include all the potential interactions between v and all the
already active nodes in Q1:t:

ρv,t+1 = φ({hi|vi ∈ Q1:t}) · gv + bv. (13)

Once we have computed the score for each inactive node v ∈
V\Q1:t, we can define the probability of activating v by

p(v|G∗t+1) =
exp(ρv,t+1)∑

u∈V\Q1:t
exp(ρu,t+1)

. (14)



D. Objective Function and Algorithm

Our ultimate task is to fit a model M from the training
cascade sequences S = {s1, ..., sn}. Since we have known
how to estimate the activation probability for each node in a
cascade at every time step, we can now develop the overall
objective function for Topo-LSTM. Denote the k-th training
cascade as sk = {(vk,1, 1), ..., (vk,Tk

, Tk)}. We want M to
maximize the activation probability at each time step for vk,t
(t = 2, ..., Tk). Thus for sk, we want to maximize

Tk∑
t=2

log p(vk,t | G∗k,t), (15)

where p(vk,t|G∗k,t), as defined in Eq. 14, relies on
the sender embedding computed from Topo-LSTM
in Sect. III-B. We denote the parameters for sender
embedding as Θ(emb) = {Wi, U

(p)
i , U

(q)
i ,bi,Wf , U

(p)
fp , U

(p)
fq ,

U
(q)
fp , U

(q)
fq ,bf ,Wc, U

(p)
c , U

(q)
c ,bc,Wo, U

(p)
o , U

(q)
o ,bo},

and the parameters for activation prediction as
Θ(act) = {gv, bv | v ∈ V }. In all, our target model is
characterized by M = {Θ(emb),Θ(act)}. Finally, for all the
cascade sequences S, we can define the overall objective
function to minimize as

L = − 1∑n
k=1(Tk − 1)

n∑
k=1

Tk∑
t=2

log p(vk,t | G∗k,t) + λΩ(M),

(16)
where λ ≥ 0 is a trade-off parameter. Ω(M) is a regularization
function over M; e.g., it sums up the `2-norm of each
parameter in M.

Topo-LSTM Algorithm. We summarize the learning algo-
rithm for Topo-LSTM in Alg. 1. We use stochastic gradient
descent (SGD) for optimization. We first initialize the model
parameters M. Then for each training cascade sequence sk,
we iterate through each of its nodes vk,t’s to construct a
diffusion topology. Specifically, we first extract the active
nodes in sk so far by the time t as Q1:t (line 5). After that, we
construct the diffusion topology G∗k,t from the data graph G
and Q1:t according to Def. 3 (line 6). Based on G∗k,t, we can
compute log p(vk,t) according to Eq. 14, and thus the loss.
Finally, we compute gradient of M as ∇M and do gradient
descent on M, using for example Adam [36].

Complexity Analysis. We analyze the running complexity of
Alg. 1. Finding Q1:t (line 5) can be done in constant time,
since each cascade sequence generally has a limited length.
To construct the diffusion topology (line 6), we make use of
the monotonically growing property of diffusion topology (as
discussed in Sect. III-A) to assist the complexity analysis. In
particular, for a cascade sequence sk, we can construct its
G∗k,t’s gradually, by adding directed edges based on the data
graph G. Thus the number of edges in G∗k,Tk

is smaller than
that of G. This means the complexity is at most |E|. It is worth
noting that, although we perform the topology construction
again and again for each timestep of each training cascade,
in fact these G∗k,t’s only need to be computed once. In SGD

Algorithm 1 Topo-LSTM.Learn
Require: Training cascades S = {s1, ..., sn} with each sk =
{(vk,1, tk,1), ..., (vk,Tk

, tk,Tk
)}, data graph G, parameters

M.
Ensure: Optimized parameters M∗.

1: Initialize paramters M∗;
2: Training examples D ← ∅;
3: for k = 1 : n do
4: for t = 2 : Tk do
5: Q1:t−1 ← sequence of active nodes by time t− 1 in

sk;
6: Construct diffusion topology G∗k,t from G and

Q1:t−1;
7: D ← D ∪ (G∗k,t, vk,t);
8: end for
9: end for

10: Generate mini-batches B from D;
11: Use stochastic gradient descent (SGD) to optimize the

objective function in Eq. 16 w.r.t. M given B, until
convergence.

(line 11), we need to compute the activation probability p(vk,t)
and the regularization term of M, both of which require a
complexity of O(|V|). To compute the gradient w.r.t. p(vk,t)
and Ω(M), which again require a complexity of O(|V|).
The gradient descent over M also requires a complexity
of O(|V|). Therefore, we have the overall complexity as
O(|E| + |V|

∑n
k=1 Tk). That is, our algorithm complexity is

linear to the data graph size (i.e., |E| and |V|) and the cascade
size (i.e.,

∑n
k=1 Tk).

IV. EXPERIMENTS

Datasets. We conduct experiments on three public real world
datasets. The statistics of the datasets are listed in Table II.
• Digg [37] contains diffusions of stories as voted by the

users, along with friendship network of the users.
• Twitter [38] contains the diffusion of URLs on Twitter

during 2010 and the follower graph of users.
• Memes [39] contains the diffusion of memes in April

2009 over online news websites; we create a link between
two websites if one of them appears earlier than the other
in any cascade.

TABLE II
STATISTICS OF DATASETS.

Digg Twitter Memes
# Nodes 279,632 137,093 5,000
# Edges 2,617,993 3,589,811 313,669

# Cascades 3,553 569 54,847
Avg. cascade length 30.0 5.7 17.0

For all these data sets, we randomly sample 75% of all
cascades to generate training examples and the rest for testing.
We further randomly sample 10% of the training cascades for
validation.



Baselines. We select four state-of-the-art and representative
baselines for comparison with our Topo-LSTM model. The
baselines can be regarded as under two categories: 1) represen-
tation learning methods: Embedded-IC, DeepCas, DeepWalk;
2) non-representation learning methods: IC-SB.
• IC-SB [13] infers the diffusion probability pu,v of each

edge (u, v) ∈ E given training cascades, and predicts
diffusion under the classical IC framework, with the
probability of activating an inactive node v at time t
given by 1 −

∏
u∈Pv,t

(1 − pu,v), where Pv,t is defined
in Sect. III-A. We use the Static Bernoulli (SB) in their
paper which shows the best performance for our problem
setting.

• Embedded-IC [14] grounds in the IC framework. It
embeds nodes in a latent diffusion space learned from
the observed cascades. Then the diffusion probabilities
between nodes are computed based on their distances in
the embedding space.

• DeepCas [15] represents a diffusion by some sampled
paths from the induced diffusion subgraph. A GRU net-
work with an attention mechanism transforms the these
paths into a single vector to represent the diffusion.
We replace the diffusion size regressor at the end of
their pipeline with a logistic classifier to predict node
activations.

• DeepWalk [22] represents the simple baseline which com-
putes the embedding of nodes without using the cascade
information, and aggregate the embeddings of the active
nodes by mean pooling to represent the diffusion. We
then use a logistic classifier to predict diffusion.

We choose the hyperparamters for each baseline as follows.
For Topo-LSTM and DeepCas, the hidden dimensionality d is
set to 512. For DeepCas, we generate 200 walks of length 10
for each cascade, the same setting as in [15]. For Embedded-
IC and DeepWalk, we set d to 64 and 128 respectively, which
give the best empirical performance on validation sets.

Evaluation metrics. Given the current diffusion, predicting
the next active node can be viewed as a retrieval problem [14]
due to the large number of potential targets. Specifically, the
model ranks the inactive nodes by their predicted activation
probabilities, and the actual node to be activated next is the
(single) relevant item. We regard predicting future activations
as a retrival task and use ranking measures due to two main
considerations: (1) since each unactivated node could possibly
be activated next, there are massive potential targets, thus it
is usually unrealistic to predict exactly the next node; (2) it is
often useful enough to provide a short list of most likely future
activations instead the exact single next node. For evaluation,
we use two widely adopted ranking metrics (varying k in
{10, 50, 100}):
• Hits@k: The rate of the top-k ranked nodes containing

the next active node.
• MAP@k: The classical Mean Average Precision measure.

Comparisons with baselines. We compare Topo-LSTM with

the baselines on diffusion prediction. As shown in Table III,
the results show an overall trend that the accuracy improves as
k increases, as expected since the target is more likely to be
included with more candidate nodes retrieved. In comparison
with baselines, on the MAP measure, Topo-LSTM improves
the best baselines by 20.1% (Twitter, MAP@100) to 56.6%
(Digg, MAP@10) relatively across all datasets. On the Hits
measure, Topo-LSTM improves the best baselines by 2.7%
(Memes, Hits@100) to 42.3% (Digg, Hits@10) relatively on
Digg and Memes. It also improves the best baselines by
10.2% relatively for Hits@10 on Twitter. These results shows
that with explicit modeling of the dynamic DAG structure,
Topo-LSTM can better use the topological information of a
diffusion than DeepCas. The results also show that, by learning
a dynamic sender embedding, Topo-LSTM can better capture
the complex diffusion dynamics and interactions among active
nodes, which are important to activation prediction, than
Embedded-IC, IC-SB, and DeepWalk, which either learn static
representations of active nodes or consider the influence of
each active node independently. On the other hand, Embedded-
IC shows better performance for Hits@{50, 100} on Twitter. A
possible reason is that Twitter has a small number of training
cascades; as Embedded-IC has the least number of parameters
(node embeddings in a latent diffusion space), it is more
robust against overfitting than other methods. In other cases
Embedded-IC performs worse, possibly because its latent dif-
fusion space cannot sufficiently capture the complexity of real
world diffusions. We also note that the overall performances
of all methods are better on the Memes dataset. We could
explain this by the fact that the cascades in Memes are mostly
short, thus their structure and dynamics are relatively simple
for the model to capture.
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Fig. 3. Impact of dimensionality d on Topo-LSTM.

Impacts of hyperparameters. We study how the number
of hidden dimensions d can affect the performance of Topo-
LSTM. As shown in Fig. 3, on Twitter the performance begins
to converges at d = 256, possibly due to its small training set,
while we could still see steady performance gain on Memes
and Digg up to d = 512, indicating that the model has not
been saturated; given the large number of observed cascades
in Memes and the longer cascade sequences of in Digg, there
is room for us to learn with larger models.

Sensitivity to data characteristics. We also evaluate how
the length of the given cascade could impact the accruacy
of predicting future activations. The results are shown in
Fig. 4. On Digg and Memes, we observe the trend that the



TABLE III
RESULTS ON INFORMATION DIFFUSION PREDICTION.

Digg Twitter Memes
MAP@k (%) @10 @50 @100 @10 @50 @100 @10 @50 @100

IC-SB 3.624 4.584 4.800 9.268 9.819 9.834 18.220 19.428 19.558
DeepWalk 3.288 4.088 4.289 15.021 15.324 15.345 13.523 14.636 14.798

Embedded-IC 2.812 3.564 3.755 11.984 12.433 12.480 18.270 19.247 19.374
DeepCas 3.743 4.632 4.842 17.039 17.305 17.330 19.564 20.618 20.753

Topo-LSTM 5.862 6.842 7.031 20.548 20.779 20.805 29.000 29.933 30.037
Hits@k (%) @10 @50 @100 @10 @50 @100 @10 @50 @100

IC-SB 10.826 33.113 48.412 22.151 31.242 32.266 41.356 65.884 74.868
DeepWalk 9.689 29.985 44.342 24.712 30.730 32.266 28.315 51.193 62.617

Embedded-IC 8.887 26.117 39.220 25.134 33.493 36.597 35.124 55.966 65.053
DeepCas 10.269 30.826 45.741 25.661 31.190 33.173 38.858 60.478 69.921

Topo-LSTM 15.410 37.363 50.384 28.279 33.152 34.897 50.781 69.548 76.850
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Fig. 4. Accuracy of Topo-LSTM at varying cascade length.

prediction accuracy generally decreases as the length of the
given cascade increases. That is, it is likely that, in general,
future activations are harder to predict for larger cascades. This
intuitively makes sense, since given a larger number of active
nodes, there are also more potential future nodes to be actived,
thus more uncertainty. It is also worth noting that similar
phenomena is observed for sentence classification [18], where
prediction tasks have better performance on shorter sentences.
However, this phenomenon is not observed on Twitter. A
possible explanation is that there is higher variation in the
propagation paths of tweets, thus future activations for shorter
cascades are as well unpredictable as in longer ones.

TABLE IV
RUNNING TIME (IN MINUTES).

Digg Twitter Memes
Time (mins) 140 20.8 117

Running Time. We implement Topo-LSTM using Theano 0.9
and conduct all experiments on a machine with an Intel i7-
6800K CPU, 32GB memory, and a GTX 1080 GPU. For all
datasets, it takes less than 10 minutes to generate the training
examples and less 3 hours to train the model, with our default
experiment setting. The detailed running time are reported in
Table IV.

V. CONCLUSION

In this paper, we study the problem of predicting future node
activations in information diffusion. We adopt a representation

learning approach and propose the novel Topo-LSTM model.
Tailored for diffusion prediction, Topo-LSTM extends the
standard LSTM architecture and is structured as a dynamic
DAG. To better model the dynamics of a diffusion, we propose
to use the diffusion topology as our new data model, and
explicitly model its dynamic DAG structure using Topo-
LSTM. As verified by experiments on real world datasets,
TopoLSTM improves the best baselines by relatively 20.1%–
56.6% (MAP) across all the data sets. It also improves the best
baselines by relatively 2.7%–42.3% (Hits) on both Digg and
Memes. Thus, we conclude that our new data model and Topo-
LSTM architecture can more effectively capture the diffusion
structure as dynamic DAGs.

In the future, we plan to incorporate the content of diffusions
and richer node features into our model as additional signals
help information diffusion prediction. Besides, we also want to
differentiate the importance of each active node in activating
a target inactive node, based on how often the active node
interacts with the inactive node, when the active node was
activated, how long the inactive node has remained unactivated
since it was exposed to active neighbors.
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